Single-shot optical neural network

被引:12
|
作者
Bernstein, Liane [1 ]
Sludds, Alexander [1 ,2 ]
Panuski, Christopher [1 ]
Trajtenberg-Mills, Sivan [1 ]
Hamerly, Ryan [1 ,3 ]
Englund, Dirk [1 ]
机构
[1] MIT, Res Lab Elect, 50 Vassar St, Cambridge, MA 02139 USA
[2] Lightmatter Inc, 100 Summer St, Boston, MA 02110 USA
[3] NTT Res Inc, Phys & Informat Labs, Sunnyvale, CA 94085 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
PARALLEL; GENERATION; PHOTON;
D O I
10.1126/sciadv.adg7904
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Analog optical and electronic hardware has emerged as a promising alternative to digital electronics to improve the efficiency of deep neural networks (DNNs). However, previous work has been limited in scalability (input vector length K approximate to 100 elements) or has required nonstandard DNN models and retraining, hindering widespread adoption. Here, we present an analog, CMOS-compatible DNN processor that uses free-space optics to reconfigurably distribute an input vector and optoelectronics for static, updatable weighting and the nonlinearity-with K approximate to 1000 and beyond. We demonstrate single-shot-per-layer classification of the MNIST, Fashion-MNIST, and QuickDraw datasets with standard fully connected DNNs, achieving respective accuracies of 95.6, 83.3, and 79.0% without preprocessing or retraining. We also experimentally determine the fundamental upper bound on throughput (similar to 0.9 exaMAC/s), set by the maximum optical bandwidth before substantial increase in error. Our combination of wide spectral and spatial bandwidths enables highly efficient computing for next-generation DNNs.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Single-Shot Refinement Neural Network for Object Detection
    Zhang, Shifeng
    Wen, Longyin
    Bian, Xiao
    Lei, Zhen
    Li, Stan Z.
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4203 - 4212
  • [2] Fast demodulation of single-shot interferogram via convolutional neural network
    Liu, Xin
    Yang, Zhongming
    Dou, Jiantai
    Liu, Zhaojun
    [J]. OPTICS COMMUNICATIONS, 2021, 487
  • [3] Single-shot ultrafast optical imaging
    Liang, Jinyang
    Wang, Lihong V.
    [J]. OPTICA, 2018, 5 (09): : 1113 - 1127
  • [4] Active particle feedback control with a single-shot detection convolutional neural network
    Fraenzl, Martin
    Cichos, Frank
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [5] Single-Shot Global and Local Context Refinement Neural Network for Head Detection
    Hu, Jingyuan
    Yang, Zhouwang
    [J]. FUTURE INTERNET, 2022, 14 (12)
  • [6] Active particle feedback control with a single-shot detection convolutional neural network
    Martin Fränzl
    Frank Cichos
    [J]. Scientific Reports, 10
  • [7] Conformal convolutional neural network (CCNN) for single-shot sensorless wavefront sensing
    Zhang, Yuanlong
    Zhou, Tiankuang
    Fang, Lu
    Kong, Lingjie
    Xie, Hao
    Dai, Qionghai
    [J]. OPTICS EXPRESS, 2020, 28 (13): : 19218 - 19228
  • [8] Single-shot pruning and quantization for hardware-friendly neural network acceleration
    Jiang, Bofeng
    Chen, Jun
    Liu, Yong
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [9] RefineDet plus plus : Single-Shot Refinement Neural Network for Object Detection
    Zhang, Shifeng
    Wen, Longyin
    Lei, Zhen
    Li, Stan Z.
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (02) : 674 - 687
  • [10] Deep neural networks in single-shot ptychography
    Wengrowicz, Omri
    Peleg, Or
    Zahavy, Tom
    Loevsky, Barry
    Cohen, Oren
    [J]. OPTICS EXPRESS, 2020, 28 (12): : 17511 - 17520