Motion and teleportation of polar bubbles in low-dimensional ferroelectrics

被引:4
|
作者
Prokhorenko, S. [1 ,2 ]
Nahas, Y. [1 ,2 ]
Govinden, V. [3 ]
Zhang, Q. [3 ,4 ]
Valanoor, N. [3 ]
Bellaiche, L. [1 ,2 ]
机构
[1] Univ Arkansas, Phys Dept, Fayetteville, AR 72701 USA
[2] Univ Arkansas, Inst Nanosci & Engn, Fayetteville, AR 72701 USA
[3] Univ New South Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
[4] CSIRO Mfg, Lindfield, NSW 2070, Australia
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
TEMPERATURE PROPERTIES; TRANSITIONS;
D O I
10.1038/s41467-023-44639-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electric bubbles are sub-10nm spherical vortices of electric dipoles that can spontaneously form in ultra-thin ferroelectrics. While the static properties of electric bubbles are well established, little to nothing is known about the dynamics of these particle-like structures. Here, we reveal pathways to realizing both the spontaneous and controlled dynamics of electric bubbles in ultra-thin Pb(Zr0.4Ti0.6)O3 films. In low screening conditions, we find that electric bubbles exhibit thermally-driven chaotic motion giving rise to a liquid-like state. In the high screening regime, we show that bubbles remain static but can be continuously displaced by a local electric field. Additionally, we predict and experimentally demonstrate the possibility of bubble teleportation - a process wherein a bubble is transferred to a new location via a single electric field pulse of a PFM tip. Finally, we attribute the discovered phenomena to the hierarchical structure of the energy landscape. Nanoscale ferroelectric domains called electric bubbles are shown to behave as dynamical particles. Using atomistic simulations and experiments, the authors reveal a bubble liquid phase and demonstrate teleportation-like displacements of single bubbles.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Motion and teleportation of polar bubbles in low-dimensional ferroelectrics
    S. Prokhorenko
    Y. Nahas
    V. Govinden
    Q. Zhang
    N. Valanoor
    L. Bellaiche
    Nature Communications, 15
  • [2] A low-dimensional model of separation bubbles
    Krechetnikov, R.
    Marsden, J. E.
    Nagib, H. M.
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (14) : 1152 - 1160
  • [3] Phase field simulations of low-dimensional ferroelectrics
    Wang, Jie
    Kamlah, Marc
    Zhang, Tong-Yi
    ACTA MECHANICA, 2010, 214 (1-2) : 49 - 59
  • [4] Theoretical exploration and design of low-dimensional ferroelectrics
    Zhang, Lei
    Liu, Minghao
    Du, Aijun
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 233
  • [5] Phase field simulations of low-dimensional ferroelectrics
    Jie Wang
    Marc Kamlah
    Tong-Yi Zhang
    Acta Mechanica, 2010, 214 : 49 - 59
  • [6] Chiral Switchable Low-Dimensional Perovskite Ferroelectrics
    Li, Lin-Sui
    Tan, Yu-Hui
    Wei, Wen-Juan
    Gao, Hong-Qiang
    Tang, Yun-Zhi
    Han, Xiao-Bo
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (01) : 2044 - 2051
  • [7] From one bubble to several bubbles: The low-dimensional case
    Druet, O
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2003, 63 (03) : 399 - 473
  • [8] Motion synthesis and editing in low-dimensional spaces
    Shin, Hyun Joon
    Lee, Jehee
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2006, 17 (3-4) : 219 - 227
  • [9] THERMAL-CONDUCTIVITY OF LOW-DIMENSIONAL DISPLACIVE-TYPE FERROELECTRICS
    KASHCHEEV, VN
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1979, 92 (01): : K5 - K7
  • [10] Emergent Berezinskii-Kosterlitz-Thouless Phase in Low-Dimensional Ferroelectrics
    Nahas, Y.
    Prokhorenko, S.
    Kornev, I.
    Bellaiche, L.
    PHYSICAL REVIEW LETTERS, 2017, 119 (11)