SAMDConv: Spatially Adaptive Multi-scale Dilated Convolution

被引:0
|
作者
Hu, Haigen [1 ]
Yu, Chenghan [1 ]
Zhou, Qianwei [1 ]
Guan, Qiu [1 ]
Chen, Qi [1 ]
机构
[1] Zhejiang Univ Technol, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
SAMDConv; Image Segmentation; Receptive Field;
D O I
10.1007/978-981-99-8543-2_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dilated convolutions have received a widespread attention in popular segmentation networks owing to the ability to enlarge the receptive field without introducing additional parameters. However, it is unsatisfactory to process multi-scale objects from different spatial positions in an image only by using multiple fixed dilation rates based on the structure of multiple parallel branches. In this work, a novel spatially-adaptive multi-scale dilated convolution (SAMDConv) is proposed to adaptively adjust the size of the receptive field for different scale targets. Specifically, a Spatial-Separable Attention (SSA) module is firstly proposed to personally select a reasonable combination of sampling scales for each spatial location. Then a recombination module is proposed to combine the output features of the four dilated convolution branches according to the attention maps generated by SSA. Finally, a series of experiments are conducted to verify the effectiveness of the proposed method based on various segmentation networks on various datasets, such as Cityscapes, ADE20K and Pascal VOC. The results show that the proposed SAMDConv can obtain competitive performance compared with normal dilated convolutions and depformable convolutions, and can effectively improve the ability to extract multi-scale information by adaptively regulating the dilation rate.
引用
收藏
页码:460 / 472
页数:13
相关论文
共 50 条
  • [1] Crowd Counting by Multi-Scale Dilated Convolution Networks
    Dong, Jingwei
    Zhao, Ziqi
    Wang, Tongxin
    ELECTRONICS, 2023, 12 (12)
  • [2] Lightweight Object Detection Combined with Multi-Scale Dilated-Convolution and Multi-Scale Deconvolution
    Yi, Qingming
    Lü, Renyi
    Shi, Min
    Luo, Aiwen
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2022, 50 (12): : 41 - 48
  • [3] A Multi-scale Dilated Residual Convolution Network for Image Denoising
    Jia, Xinlei
    Peng, Yali
    Ge, Bao
    Li, Jun
    Liu, Shigang
    Wang, Wenan
    NEURAL PROCESSING LETTERS, 2023, 55 (02) : 1231 - 1246
  • [4] Multi-scale Dilated Convolution Transformer for Single Image Deraining
    Wu, Xianhao
    JiyangLu
    Wu, Jindi
    Li, Yufeng
    2023 IEEE 25TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, MMSP, 2023,
  • [5] A Multi-scale Dilated Residual Convolution Network for Image Denoising
    Xinlei Jia
    Yali Peng
    Bao Ge
    Jun Li
    Shigang Liu
    Wenan Wang
    Neural Processing Letters, 2023, 55 : 1231 - 1246
  • [6] Rolling bearing fault diagnosis based on dilated convolution and enhanced multi-scale feature adaptive fusion
    Han K.
    Zhan H.
    Yu J.
    Wang R.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (06): : 1285 - 1295
  • [7] Learning Multi-Scale Features Using Dilated Convolution for Contour Detection
    Zhao, Haojun
    Lin, Chuan
    Li, Fuzhang
    Xie, Yongsheng
    Wu, Lingmei
    IEEE ACCESS, 2023, 11 : 64282 - 64293
  • [8] Multi-scale dilated convolution of convolutional neural network for crowd counting
    Yanjie Wang
    Shiyu Hu
    Guodong Wang
    Chenglizhao Chen
    Zhenkuan Pan
    Multimedia Tools and Applications, 2020, 79 : 1057 - 1073
  • [9] Deep multi-scale dilated convolution network for coronary artery segmentation
    Qiu, Yue
    Chai, Senchun
    Zhu, Enjun
    Zhang, Nan
    Zhang, Gaochang
    Zhao, Xin
    Cui, Lingguo
    Farhan, Ishrak Md
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 92
  • [10] Multi-scale dilated convolution of convolutional neural network for image denoising
    Yanjie Wang
    Guodong Wang
    Chenglizhao Chen
    Zhenkuan Pan
    Multimedia Tools and Applications, 2019, 78 : 19945 - 19960