Alleviation of Shade Stress in Chinese Yew (Taxus chinensis) Seedlings with 5-Aminolevulinic Acid (ALA)

被引:2
|
作者
Wu, Liuliu [1 ]
Song, Linlin [1 ]
Cao, Lifan [2 ]
Meng, Li [1 ]
机构
[1] Henan Inst Sci & Technol, Coll Life Sci & Technol, Xinxiang 453003, Peoples R China
[2] Henan Acad Sci, Engn & Technol Res Ctr Paper Mulberry Ind, Zhengzhou 451451, Peoples R China
来源
PLANTS-BASEL | 2023年 / 12卷 / 12期
关键词
yew; shade stress; antioxidase activities; reactive oxygen species; secondary metabolites; PHOTOSYNTHETIC CHARACTERISTICS; INDUCED DAMAGE; BIOSYNTHESIS; PHOTOSYSTEM; FLAVONOIDS; PLANT; FLUORESCENCE; TEMPERATURE; TOLERANCE; TRAITS;
D O I
10.3390/plants12122333
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
5-aminolevulinic acid (ALA) is a novel regulator that can promote plant growth, nitrogen uptake, and abiotic stress tolerance. Its underlying mechanisms, however, have not been fully investigated. In this study, the effects of ALA on morphology, photosynthesis, antioxidant systems, and secondary metabolites in two cultivars of 5-year-old Chinese yew (Taxus chinensis) seedlings, 'Taihang' and 'Fujian', were examined under shade stress (30% light for 30 days) using different doses of ALA (0, 30, and 60 mg/L). The findings from our study show that shade stress significantly reduced plant height, stem thickness, and crown width and increased malondialdehyde (MDA) levels. However, the application of 30 mg/L ALA effectively mitigated these effects, which further induced the activity of antioxidant enzymes under shade stress, resulting in the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) being increased by 10%, 16.4%, and 42.1%, and 19.8%, 20.1%, and 42% in 'Taihang' and 'Fujian', respectively. It also promoted their role in the absorption, conversion, and efficient use of light energy. Additionally, the use of 30 mg/L ALA caused a significant increase in the concentration of secondary metabolites, including polysaccharide (PC), carotenoid (CR), and flavonoids (FA), with increases of up to 46.1%, 13.4%, and 35.6% and 33.5%, 7.5%, and 57.5% in both yew cultivars, respectively, contributing to nutrient uptake. With ALA treatment, the yew seedlings showed higher chlorophyll (total chlorophyll, chlorophyll a and b) levels and photosynthesis rates than the seedlings that received the shade treatment alone. To conclude, the application of 30 mg/L ALA alleviated shade stress in yew seedlings by maintaining redox balance, protecting the photorespiratory system, and increasing organic metabolites, thus increasing the number of new branches and shoots and significantly promoting the growth of the seedlings. Spraying with ALA may be a sustainable strategy to improve the shade-resistant defense system of yew. As these findings increase our understanding of this shade stress response, they may have considerable implications for the domestication and cultivation of yew.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Alleviation of Lead Stress on Sage Plant by 5-Aminolevulinic Acid (ALA)
    El-Shora, Hamed M.
    Massoud, Gehan F.
    El-Sherbeny, Ghada A.
    Alrdahe, Salma Saleh
    Darwish, Doaa B.
    PLANTS-BASEL, 2021, 10 (09):
  • [2] Transcriptomic Response of Chinese Yew (Taxus chinensis) to Cold Stress
    Meng, Delong
    Yu, Xianghua
    Ma, Liyuan
    Hu, Jin
    Liang, Yili
    Liu, Xueduan
    Yin, Huaqun
    Liu, Hongwei
    He, Xiaojia
    Li, Diqiang
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [3] 5-Aminolevulinic Acid (ALA) Alleviated Salinity Stress in Cucumber Seedlings by Enhancing Chlorophyll Synthesis Pathway
    Wu, Yue
    Jin, Xin
    Liao, Weibiao
    Hu, Linli
    Dawuda, Mohammed M.
    Zhao, Xingjie
    Tang, Zhongqi
    Gong, Tingyu
    Yu, Jihua
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [4] Alleviation of Salt-Induced Oxidative Damage by 5-Aminolevulinic Acid in Wheat Seedlings
    Genisel, Mucip
    Erdal, Serkan
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [5] Effects of 5-aminolevulinic acid on growth of plant seedlings
    Hotta, Y
    Watanabe, K
    Tanaka, T
    Takeuchi, Y
    Konnai, M
    JOURNAL OF PESTICIDE SCIENCE, 1997, 22 (02): : 102 - 107
  • [6] Urinary 5-aminolevulinic acid (ALA) adjusted by creatinine: A surrogate for plasma ALA?
    Sithisarankul, P
    Schwartz, BS
    Lee, BK
    Strickland, PT
    JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL MEDICINE, 1998, 40 (10) : 901 - 906
  • [7] THE USE OF 5-AMINOLEVULINIC ACID (ALA) IN PHOTODYNAMIC THERAPY (PDT)
    CHARLESWORTH, P
    TRUSCOTT, TG
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 1993, 18 (01) : 99 - 100
  • [8] Iontophoretic Delivery of 5-Aminolevulinic Acid (ALA): Effect of pH
    Renata F. V. Lopez
    M. Vitória L. B. Bentley
    M. Begoña Delgado-Charro
    Richard H. Guy
    Pharmaceutical Research, 2001, 18 : 311 - 315
  • [9] Antitumor Effect of Combination of Hyperthermotherapy and 5-Aminolevulinic acid (ALA)
    Takahashi, Kiwamu
    Hasegawa, Takeo
    Ishii, Takuya
    Suzuki, Atsuko
    Nakajima, Motowo
    Uno, Kazuko
    Yasuda, Iuko
    Kishi, Atsuko
    Sadamoto, Kaori
    Abe, Fuminori
    Tanaka, Tohru
    ANTICANCER RESEARCH, 2013, 33 (07) : 2861 - 2866
  • [10] Iontophoretic delivery of 5-aminolevulinic acid (ALA):: Effect of pH
    Lopez, RFV
    Vitória, M
    Bentley, LB
    Delgado-Charro, MB
    Guy, RH
    PHARMACEUTICAL RESEARCH, 2001, 18 (03) : 311 - 315