Controlling the photoelectron holography with shaped intense ultrashort laser pulses

被引:0
|
作者
Zhao, Xiaoyun [1 ,2 ]
Liu, Mingqing [3 ]
Jiang, Wei-Chao [4 ]
Li, Weidong [5 ]
Chen, Jing [5 ,6 ]
Hao, Xiaolei [1 ,2 ]
机构
[1] Shanxi Univ, Inst Theoret Phys, Taiyuan 030006, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Dept Phys, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Peoples R China
[3] Shaanxi Normal Univ, Sch Phys & Informat Technol, Xian 710119, Peoples R China
[4] Shenzhen Univ, Inst Quantum Precis Measurement, Coll Phys & Optoelect Engn, Shenzhen 518060, Peoples R China
[5] Shenzhen Technol Univ, Coll Engn Phys, Ctr Adv Mat Diagnost Technol, Shenzhen Key Lab Ultraintense Laser & Adv Mat Tech, Shenzhen 518118, Peoples R China
[6] Univ Sci & Technol China, Dept Modern Phys, Hefei Natl Lab Phys Sci, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Pulse shaping; Photoelectron holography; Intercycle interference; Intracycle interference; ABOVE-THRESHOLD IONIZATION; ATOMS;
D O I
10.1016/j.rinp.2024.107354
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We perform a theoretical investigation on the control of photoelectron holography with shaped intense ultrashort laser pulses. By adjusting the pi phase-flip position in the frequency domain, the shape of the time-dependent envelope of the input laser electric field changes from Gaussian to trapezoidal and finally to double-peak pulse. The photoelectron momentum spectra for different pulse shapes are calculated by both three-dimensional time-dependent Schrodinger equation (TDSE) method and Quantum-trajectory Monte Carlo (QTMC) model, and good agreement is achieved between results calculated by the two methods. Interference pattern in photoelectron holography exhibits a strong dependence on the shape of the electric field. Analysis shows that adjacent and nonadjacent intercycle interference as well as intracycle interference are all effectively regulated by the shaped pulse.
引用
下载
收藏
页数:7
相关论文
共 50 条
  • [1] Controlling Rydberg excitation process with shaped intense ultrashort laser pulses
    赵晓云
    王春成
    胡师林
    李卫东
    陈京
    郝小雷
    Chinese Physics B, 2019, 28 (08) : 83 - 87
  • [2] Controlling Rydberg excitation process with shaped intense ultrashort laser pulses
    Zhao, Xiao-Yun
    Wang, Chun-Cheng
    Hu, Shi-Lin
    Li, Wei-Dong
    Chen, Jing
    Hao, Xiao-Lei
    CHINESE PHYSICS B, 2019, 28 (08)
  • [3] Controlling ultrashort intense laser pulses by plasma Bragg gratings with ultrahigh damage threshold
    Wu, HC
    Sheng, ZM
    Zhang, QJ
    Cang, Y
    Zhang, J
    LASER AND PARTICLE BEAMS, 2005, 23 (04) : 417 - 421
  • [4] Irradiation of myoglobin by intense, ultrashort laser pulses
    Juliah J. Chelliah
    S. V. K. Kumar
    Aditya K. Dharmadhikari
    Jayashree A. Dharmadhikari
    Deepak Mathur
    Applied Physics B, 2016, 122
  • [5] Rotations of molecular photoelectron angular distributions with intense ultrashort circularly polarized attosecond laser pulses
    Yuan, Kai-Jun
    Chelkowski, Szczepan
    Bandrauk, Andre D.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (13):
  • [6] Irradiation of myoglobin by intense, ultrashort laser pulses
    Chelliah, Juliah J.
    Kumar, S. V. K.
    Dharmadhikari, Aditya K.
    Dharmadhikari, Jayashree A.
    Mathur, Deepak
    APPLIED PHYSICS B-LASERS AND OPTICS, 2016, 122 (10):
  • [7] PROPAGATION OF INTENSE, ULTRASHORT LASER-PULSES IN PLASMAS
    SULLIVAN, A
    HAMSTER, H
    GORDON, SP
    FALCONE, RW
    NATHEL, H
    OPTICS LETTERS, 1994, 19 (19) : 1544 - 1546
  • [8] Nonlinear Compton scattering of ultrashort intense laser pulses
    Seipt, D.
    Kaempfer, B.
    PHYSICAL REVIEW A, 2011, 83 (02):
  • [9] Ionization of the hydrogen atom by intense ultrashort laser pulses
    Borbely, S.
    Tokesi, K.
    Nagy, L.
    PHYSICAL REVIEW A, 2008, 77 (03):
  • [10] Direct acceleration of electrons by intense ultrashort laser pulses
    Bahari, A
    Taranukhin, VD
    QUANTUM ELECTRONICS, 2003, 33 (06) : 563 - 564