A machine learning approach for real-time cortical state estimation

被引:1
|
作者
Weiss, David A. [1 ,2 ]
Borsa, Adriano M. F. [1 ,3 ]
Pala, Aurelie [4 ]
Sederberg, Audrey J. [5 ,6 ]
Stanley, Garrett B. [2 ]
机构
[1] Georgia Inst Technol, Bioengn Program, Atlanta, GA USA
[2] Emory Univ, Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30322 USA
[3] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA USA
[4] Emory Univ, Dept Biol, Smyrna, GA USA
[5] Univ Minnesota, Dept Neurosci, Med Sch, Minneapolis, MN USA
[6] Univ Minnesota, Med Discovery Team Opt Imaging & Brain Sci, Minneapolis, MN USA
关键词
cortical state; LFP; machine learning; latent dynamics; variability; HIDDEN MARKOV-MODELS; BARREL CORTEX; BEHAVIORAL STATES; GABAERGIC NEURONS; BRAIN; MODULATION; CIRCUIT; DYNAMICS; SLEEP; ELECTROENCEPHALOGRAM;
D O I
10.1088/1741-2552/ad1f7b
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Cortical function is under constant modulation by internally-driven, latent variables that regulate excitability, collectively known as 'cortical state'. Despite a vast literature in this area, the estimation of cortical state remains relatively ad hoc, and not amenable to real-time implementation. Here, we implement robust, data-driven, and fast algorithms that address several technical challenges for online cortical state estimation. Approach. We use unsupervised Gaussian mixture models to identify discrete, emergent clusters in spontaneous local field potential signals in cortex. We then extend our approach to a temporally-informed hidden semi-Markov model (HSMM) with Gaussian observations to better model and infer cortical state transitions. Finally, we implement our HSMM cortical state inference algorithms in a real-time system, evaluating their performance in emulation experiments. Main results. Unsupervised clustering approaches reveal emergent state-like structure in spontaneous electrophysiological data that recapitulate arousal-related cortical states as indexed by behavioral indicators. HSMMs enable cortical state inferences in a real-time context by modeling the temporal dynamics of cortical state switching. Using HSMMs provides robustness to state estimates arising from noisy, sequential electrophysiological data. Significance. To our knowledge, this work represents the first implementation of a real-time software tool for continuously decoding cortical states with high temporal resolution (40 ms). The software tools that we provide can facilitate our understanding of how cortical states dynamically modulate cortical function on a moment-by-moment basis and provide a basis for state-aware brain machine interfaces across health and disease.
引用
下载
收藏
页数:19
相关论文
共 50 条
  • [1] A Compositional Approach for Real-Time Machine Learning
    Allen, Nathan
    Raje, Yash
    Ro, Jin Woo
    Roop, Partha
    17TH ACM-IEEE INTERNATIONAL CONFERENCE ON FORMAL METHODS AND MODELS FOR SYSTEM DESIGN (MEMOCODE), 2019,
  • [2] A Machine Learning Approach for Real-Time Wheel-Rail Interface Friction Estimation
    Folorunso, Morinoye O. O.
    Watson, Michael
    Martin, Alan
    Whittle, Jacob W. W.
    Sutherland, Graham
    Lewis, Roger
    JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 2023, 145 (09):
  • [3] A Machine Learning Approach for Real-Time Reachability Analysis
    Allen, Ross E.
    Clark, Ashley A.
    Starek, Joseph A.
    Pavone, Marco
    2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014), 2014, : 2202 - 2208
  • [4] A Real-Time Machine Learning Approach for Sentiment Analysis
    Sarkar, Souvik
    Mallick, Partho
    Banerjee, Aiswaryya
    INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS, VOL 1, 2015, 339 : 705 - 717
  • [5] A Machine Learning Method for Real-Time Traffic State Estimation from Probe Vehicle Data
    Bensen, Erik A.
    Severino, Joseph
    Ugirumurera, Juliette
    Wang, Qichao
    Sanyal, Jibonananda
    Jones, Wesley
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 752 - 757
  • [6] ATTEMPT OF A REAL-TIME DRILLING STATE IDENTIFICATION WITH MACHINE LEARNING
    Inoue, Tomoya
    Ishiwata, Junya
    Wada, Ryota
    Tahara, Junichiro
    PROCEEDINGS OF THE ASME 39TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2020, VOL 11, 2020,
  • [7] A state space modeling approach to real-time phase estimation
    Wodeyar, Anirudh
    Schatza, Mark
    Widge, Alik S.
    Eden, Uri T.
    Kramer, Mark A.
    ELIFE, 2021, 10
  • [8] Deep ensemble learning-based approach to real-time power system state estimation
    Bhusal, Narayan
    Shukla, Raj Mani
    Gautam, Mukesh
    Benidris, Mohammed
    Sengupta, Shamik
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 129
  • [9] A NOVEL APPROACH TO REAL-TIME RANGE ESTIMATION OF UNDERWATER ACOUSTIC SOURCES USING SUPERVISED MACHINE LEARNING
    Houegnigan, Ludwig
    Safari, Pooyan
    Nadeu, Climent
    van der Schaar, Mike
    Andre, Michel
    OCEANS 2017 - ABERDEEN, 2017,
  • [10] Bayesian Nonparametric Learning of Cloth Models for Real-Time State Estimation
    Koganti, Nishanth
    Tamei, Tomoya
    Ikeda, Kazushi
    Shibata, Tomohiro
    IEEE TRANSACTIONS ON ROBOTICS, 2017, 33 (04) : 916 - 931