CATS: Cloud-native time-series data annotation tool for intensive care

被引:0
|
作者
Wac, Marceli [1 ,2 ]
Santos-Rodriguez, Raul [1 ]
McWilliams, Chris [1 ,2 ]
Bourdeaux, Christopher [2 ]
机构
[1] Univ Bristol, Fac Engn, Bristol, England
[2] Univ Hosp Bristol & Weston NHS Fdn Trust, Bristol, England
基金
英国工程与自然科学研究理事会;
关键词
Annotation; Labelling; Dataset annotation; Cloud-native infrastructure; Time-series data; Healthcare;
D O I
10.1016/j.softx.2023.101593
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Intensive care units are complex, data-rich healthcare environments which provide substantial opportunities for applications in machine learning. While certain solutions can be derived directly from data, complex problems require additional human input provided in the form of data annotations. Due to the large size and complexities associated with healthcare data, the existing software packages for time-series data annotation are infeasible for effective use in the clinical setting and frequently require significant time commitments and technical expertise. Our software provides a comprehensive, end-to-end solution to the time-series data annotation and proposes a novel approach for a semi-automated annotation in the cloud. It allows for conducting large-scale, asynchronous data annotation activities across multiple, geographically distributed users. The adoption of our software could benefit the wider research community by enhancing existing datasets, creating novel avenues for research that uses them and allowing for meaningful data annotation within smaller and highly specialised populations.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Scalability and Robustness of Time-Series Databases for Cloud-Native Monitoring of Industrial Processes
    Goldschmidt, Thomas
    Jansen, Anton
    Koziolek, Heiko
    Doppelhamer, Jens
    Breivold, Hongyu Pei
    2014 IEEE 7TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (CLOUD), 2014, : 602 - 609
  • [2] Lindorm TSDB: A Cloud-native Time-series Database for Large-scale Monitoring Systems
    Shen, Chunhui
    Ouyang, Qianyu
    Li, Feibo
    Liu, Zhipeng
    Zhu, Longcheng
    Zou, Yujie
    Su, Qing
    Yu, Tianhuan
    Yi, Yi
    Hu, Jianhong
    Zheng, Cen
    Wen, Bo
    Zheng, Hanbang
    Xu, Lunfan
    Pan, Sicheng
    Wu, Bin
    He, Xiao
    Li, Ye
    Tan, Jian
    Wang, Sheng
    Pei, Dan
    Zhang, Wei
    Li, Feifei
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2023, 16 (12): : 3715 - 3727
  • [3] A New Cloud-Native Tool for Pharmacogenetic Analysis
    Yuan, David Yu
    Park, Jun Hyuk
    Li, Zhenyu
    Thomas, Rohan
    Hwang, David M.
    Fu, Lei
    GENES, 2024, 15 (03)
  • [4] Cloud-Native Repositories for Big Scientific Data
    Abernathey, Ryan P.
    Blackmon-Luca, Charles C.
    Crone, Timothy J.
    Henderson, Naomi
    Lepore, Chiara
    Augspurger, Tom
    Banihirwe, Anderson
    Gentemann, Chelle L.
    Hamman, Joseph J.
    Henderson, Naomi
    Lepore, Chiara
    McCaie, Theo A.
    Robinson, Niall H.
    Signell, Richard P.
    COMPUTING IN SCIENCE & ENGINEERING, 2021, 23 (02) : 26 - 35
  • [5] Semi-Automatic Cloud-Native Video Annotation for Autonomous Driving
    Sanchez-Carballido, Sergio
    Senderos, Orti
    Nieto, Marcos
    Otaegui, Oihana
    APPLIED SCIENCES-BASEL, 2020, 10 (12):
  • [6] Cloud-Native Repositories for Big Scientific Data
    Abernathey, Ryan P.
    Augspurger, Tom
    Banihirwe, Anderson
    Blackmon-Luca, Charles C.
    Crone, Timothy J.
    Gentemann, Chelle L.
    Hamman, Joseph J.
    Henderson, Naomi
    Lepore, Chiara
    McCaie, Theo A.
    Robinson, Niall H.
    Signell, Richard P.
    Computing in Science and Engineering, 2021, 23 (02): : 26 - 35
  • [7] Reducing Label Fragmentation During Time-series Data Annotation to Reduce Annotation Costs
    Korpela, Joseph
    Akiyama, Takayuki
    Niikura, Takehiro
    Nakamura, Katsuyuki
    UBICOMP/ISWC '21 ADJUNCT: PROCEEDINGS OF THE 2021 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2021 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS, 2021, : 328 - 333
  • [8] ANNOTE: Annotation of time-series events
    Groh, Rene
    Li, Jie Yu
    Li-Jessen, Nicole Y. K.
    Kist, Andreas M.
    SOFTWARE IMPACTS, 2024, 21
  • [9] Predicting cloud-native application failures based on monitoring data of cloud infrastructure
    Toka, Laszlo
    Dobreff, Gergely
    Haja, David
    Szalay, Mark
    2021 IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK MANAGEMENT (IM 2021), 2021, : 842 - 847
  • [10] High-Level Data Abstraction and Elastic Data Caching for Data-Intensive AI Applications on Cloud-Native Platforms
    Gu, Rong
    Xu, Zhihao
    Che, Yang
    Wang, Xu
    Dai, Haipeng
    Zhang, Kai
    Fan, Bin
    Hou, Haojun
    Yi, Li
    Ding, Yu
    Huang, Yihua
    Chen, Guihai
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2023, 34 (11) : 2946 - 2964