Stochastic Clairaut Equation on Algebra of Generalized Functions

被引:0
|
作者
Rguigui, Hafedh [1 ,2 ]
机构
[1] Umm Al Qura Univ, AL Qunfudhah Univ Coll, Dept Math, Mecca, Saudi Arabia
[2] Univ Sousse, High Sch Sci & Technol Hammam Sousse, Rue Lamine Abassi, Hammam Sousse 4011, Tunisia
关键词
Finite-time stable; Convolution product; Generalized stochastic Clairautequation; Space of entire functions with theta-exponential growth condition of minimal type; CONVOLUTION-OPERATORS;
D O I
10.1007/s11785-023-01466-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on an infinite dimensional distributions space, we study the solution of the generalized stochastic Clairaut equation using a suitable convolution calculus. The solution of such equation is shown to be positive and its integral representation with respect to the Radon measure is given. Moreover, the contractivity property is studied. Finally, the system is shown to be finite-time stochastically stable.
引用
收藏
页数:11
相关论文
共 50 条