Case Studies for Overcoming Challenges in Using Big Data in Cancer

被引:2
|
作者
Sweeney, Shawn M. [1 ]
Hamadeh, Hisham K. [2 ]
Abrams, Natalie [3 ]
Adam, Stacey J. [4 ]
Brenner, Sara [5 ]
Connors, Dana E. [4 ]
Davis, Gerard J. [6 ]
Fiore, Louis D. [7 ]
Gawel, Susan H. [6 ]
Grossman, Robert L. [8 ]
Hanlon, Sean E. [9 ]
Hsu, Karl [10 ]
Kelloff, Gary J.
Kirsch, Ilan R.
Louv, Bill
McGraw, Deven
Meng, Frank [11 ]
Milgram, Daniel [12 ]
Miller, Robert S. [13 ]
Morgan, Emily [4 ]
Mukundam, Lata
O'Brien, Thoma [14 ]
Robbins, Paul [14 ]
Rubin, Eric H. [15 ]
Rubinstein, Wendy S.
Salmi, Liz [16 ]
Schaller, Teilo H.
Shi, George [6 ]
Sigman, Caroline C. [11 ]
Srivastava, Sudhir [17 ]
机构
[1] Amer Assoc Canc Res, Philadelphia, PA USA
[2] Genmab, Princeton, NJ USA
[3] NCI, Div Canc Prevent Early Detect Res Network, Rockville, MD USA
[4] Fdn Natl Inst Hlth, Bethesda, MD USA
[5] US FDA, Ctr Devices & Radiol Hlth, Off Vitro Diagnost, Silver Spring, MD USA
[6] Abbott Labs, Abbott Diagnost Div, Lake Forest, IL USA
[7] Boston Univ, Sch Med, Boston & New England Dept Vet Affairs, Bedford, MA USA
[8] Univ Chicago, Ctr Translat Data Sci, Chicago, IL USA
[9] NCI, Ctr Strateg Sci Initiat, Bethesda, MD USA
[10] Sanofi, Bridgewater, NJ USA
[11] Vet Adm Boston Healthcare Syst, Boston, MA USA
[12] CCS Associates, San Jose, CA USA
[13] Amer Soc Clin Oncol, CancerLinQ, Alexandria, VA USA
[14] Pfizer, Brooklyn, NY USA
[15] Merck, New York, NY USA
[16] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Massa, Italy
[17] NCI, Div Canc Prevent, Canc Biomarkers Res Grp, Rockville, MD USA
关键词
AACR PROJECT GENIE; PROSTATE-CANCER; HEALTH; PREDICTION; CARE;
D O I
10.1158/0008-5472.CAN-22-1277
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The analysis of big healthcare data has enormous potential as a tool for advancing oncology drug development and patient treat-ment, particularly in the context of precision medicine. However, there are challenges in organizing, sharing, integrating, and making these data readily accessible to the research community. This review presents five case studies illustrating various successful approaches to addressing such challenges. These efforts are CancerLinQ, the American Association for Cancer Research Project GENIE, Project Data Sphere, the National Cancer Institute Genomic Data Com-mons, and the Veterans Health Administration Clinical Data Initiative. Critical factors in the development of these systems include attention to the use of robust pipelines for data aggregation, common data models, data deidentification to enable multiple uses, integration of data collection into physician workflows, terminology standardization and attention to interoperability, extensive quality assurance and quality control activity, incorporation of multiple data types, and understanding how data resources can be best applied. By describing some of the emerging resources, we hope to inspire consideration of the secondary use of such data at the earliest possible step to ensure the proper sharing of data in order to generate insights that advance the understanding and the treatment of cancer.
引用
收藏
页码:1183 / 1190
页数:8
相关论文
共 50 条
  • [1] Challenges to Using Big Data in Cancer
    Sweeney, Shawn M.
    Hamadeh, Hisham K.
    Abrams, Natalie
    Adam, Stacey J.
    Brenner, Sara
    Connors, Dana E.
    Davis, Gerard J.
    Fiore, Louis
    Gawel, Susan H.
    Grossman, Robert L.
    Hanlon, Sean E.
    Hsu, Karl
    Kelloff, Gary J.
    Kirsch, Ilan R.
    Louv, Bill
    McGraw, Deven
    Meng, Frank
    Milgram, Daniel
    Miller, Robert S.
    Morgan, Emily
    Mukundan, Lata
    O'Brien, Thomas
    Robbins, Paul
    Rubin, Eric H.
    Rubinstein, Wendy S.
    Salmi, Liz
    Schaller, Teilo
    Shi, George
    Sigman, Caroline C.
    Srivastava, Sudhir
    [J]. CANCER RESEARCH, 2023, 83 (08) : 1175 - 1182
  • [2] Big Data in ITS: Concept, Case Studies, Opportunities, and Challenges
    Moharm, Karim, I
    Zidane, Eslam E.
    El-Mahdy, Mostafa M.
    El-Tantawy, Samah
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2019, 20 (08) : 3189 - 3194
  • [3] Big Data Equals Big Challenges for Prostate Cancer
    Gomella, Leonard G.
    [J]. CANADIAN JOURNAL OF UROLOGY, 2016, 23 (04) : 8329 - 8329
  • [4] Representational Quality Challenges of Big Data: Insights from Comparative Case Studies
    Wahyudi, Agung
    Pekkola, Samuli
    Janssen, Marijn
    [J]. CHALLENGES AND OPPORTUNITIES IN THE DIGITAL ERA, 2018, 11195 : 520 - 538
  • [5] Overcoming challenges in extracting prescribing habits from veterinary clinics using big data and deep learning
    Hur, B.
    Hardefeldt, L. Y.
    Verspoor, K.
    Baldwin, T.
    Gilkerson, J. R.
    [J]. AUSTRALIAN VETERINARY JOURNAL, 2022, 100 (05) : 220 - 222
  • [6] Big data challenges in overcoming China’s water and air pollution: relevant data and indicators
    Bo Zhang
    Robert M. Hughes
    Wayne S. Davis
    Cong Cao
    [J]. SN Applied Sciences, 2021, 3
  • [7] Big data challenges in overcoming China's water and air pollution: relevant data and indicators
    Zhang, Bo
    Hughes, Robert M.
    Davis, Wayne S.
    Cao, Cong
    [J]. SN APPLIED SCIENCES, 2021, 3 (04)
  • [8] Using Hadoop on the Mainframe: A Big Solution for the Challenges of Big Data
    Seay, Cameron
    Agrawal, Rajeev
    Kadadi, Anirudh
    Barel, Yannick
    [J]. 2015 12TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY - NEW GENERATIONS, 2015, : 765 - 769
  • [9] The Challenges of Using Big Data Effectively: A Critical Analysis of the Phenomenon of Big Data
    Koyce, Kevin
    [J]. PROCEEDINGS OF THE 5TH EUROPEAN CONFERENCE ON SOCIAL MEDIA (ECSM 2018), 2018, : 110 - 117
  • [10] Big Data, Big Challenges
    Boland, Michael V.
    [J]. OPHTHALMOLOGY, 2016, 123 (01) : 7 - 8