Multi-view Contrastive Learning for Knowledge-Aware Recommendation

被引:0
|
作者
Yu, Ruiguo [1 ,2 ,3 ]
Li, Zixuan [2 ,3 ,4 ]
Zhao, Mankun [1 ,2 ,3 ]
Zhang, Wenbin [3 ,5 ]
Yang, Ming [6 ]
Yu, Jian [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Tianjin, Peoples R China
[2] Tianjin Key Lab Cognit Comp & Applicat, Tianjin, Peoples R China
[3] Tianjin Key Lab Adv Networking, Tianjin, Peoples R China
[4] Tianjin Univ, Tianjin Int Engn Inst, Tianjin, Peoples R China
[5] Tianjin Univ, Informat & Network Ctr, Tianjin, Peoples R China
[6] Kennesaw State Univ, Coll Comp & Software Engn, Kennesaw, GA USA
基金
中国国家自然科学基金;
关键词
Recommender System; Knowledge Graph; Contrastive Learning; Self-Supervised Learning; Graph Convolutional Network;
D O I
10.1007/978-981-99-8073-4_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge-aware recommendation has attracted increasing attention due to its wide application in alleviating data-sparse and cold-start, but the real-world knowledge graph (KG) contains many noises from irrelevant entities. Recently, contrastive learning, a self-supervised learning (SSL) method, has shown excellent anti-noise performance in recommendation task. However, the inconsistency between the use of noisy embeddings in SSL tasks and the original embeddings in recommendation tasks limits the model's ability. We propose a Multi-view Contrastive learning for Knowledge-aware Recommendation framework (MCKR) to solve the above problems. To remove inconsistencies, MCKR unifies the input of SSL and recommendation tasks and learns more representations from the contrastive learning method. To alleviate the noises from irrelevant entities, MCKR preprocesses the KG triples according to the type and randomly perturbs of graph structure with different weights. Then, a novel distance-based graph convolutional network is proposed to learn more reliable entity information in KG. Extensive experiments on three popular benchmark datasets present that our approach achieves state-of-the-art. Further analysis shows that MCKR also performs well in reducing data noise.
引用
收藏
页码:211 / 223
页数:13
相关论文
共 50 条
  • [1] HIERARCHICAL AND CONTRASTIVE REPRESENTATION LEARNING FOR KNOWLEDGE-AWARE RECOMMENDATION
    Wu, Bingchao
    Kang, Yangyuxuan
    Zan, Daoguang
    Guan, Bei
    Wang, Yongji
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1050 - 1055
  • [2] Intent with knowledge-aware multiview contrastive learning for recommendation
    Tao, Shaohua
    Qiu, Runhe
    Cao, Yan
    Zhao, Huiyang
    Ping, Yuan
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (01) : 1349 - 1363
  • [3] Intent with knowledge-aware multiview contrastive learning for recommendation
    Shaohua Tao
    Runhe Qiu
    Yan Cao
    Huiyang Zhao
    Yuan Ping
    [J]. Complex & Intelligent Systems, 2024, 10 : 1349 - 1363
  • [4] Improving Knowledge-aware Recommendation with Multi-level Interactive Contrastive Learning
    Zou, Ding
    Wei, Wei
    Wang, Ziyang
    Mao, Xian-Ling
    Zhu, Feida
    Fang, Rui
    Chen, Dangyang
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 2817 - 2826
  • [5] Cross-View Contrastive Learning for Knowledge-Aware Session-Based Recommendation
    Zhang, Xiaohui
    Ma, Huifang
    Yang, Fanyi
    Li, Zhixin
    Chang, Liang
    [J]. PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2022, 13631 : 60 - 73
  • [6] KMIC: A Knowledge-Aware Recommendation with Multivariate Intentions Contrastive Learning
    Peng, Yingtao
    Dan, Tangpeng
    Zhao, Zhendong
    Maoliniyazi, Aishan
    Meng, Xiaofeng
    [J]. WEB AND BIG DATA, APWEB-WAIM 2024, PT II, 2024, 14962 : 82 - 98
  • [7] Multi-Level Knowledge-Aware Contrastive Learning Network for Personalized Recipe Recommendation
    Bai, Zijian
    Huang, Yinfeng
    Zhang, Suzhi
    Li, Pu
    Chang, Yuanyuan
    Lin, Xiang
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (24):
  • [8] Multi-view Contrastive Learning Network for Recommendation
    Bu, Xiya
    Ma, Ruixin
    [J]. PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IX, 2024, 14433 : 319 - 330
  • [9] Enhancing Knowledge-Aware Recommendation with Dual-Graph Contrastive Learning
    Huang, Jinchao
    Xie, Zhipu
    Zhang, Han
    Yang, Bin
    Di, Chong
    Huang, Runhe
    [J]. INFORMATION, 2024, 15 (09)
  • [10] A novel multi-view contrastive learning for herb recommendation
    Yang, Qiyuan
    Cheng, Zhongtian
    Kang, Yan
    Wang, Xinchao
    [J]. APPLIED INTELLIGENCE, 2024, 54 (22) : 11412 - 11429