Weyl invariance, non-compact duality and conformal higher-derivative sigma models

被引:1
|
作者
Grasso, Darren T. T. [1 ]
Kuzenko, Sergei M. M. [1 ]
Pinelli, Joshua R. R. [1 ]
机构
[1] Univ Western Australia, Dept Phys M013, 35 Stirling Highway, Crawley, WA 6009, Australia
来源
EUROPEAN PHYSICAL JOURNAL C | 2023年 / 83卷 / 03期
基金
澳大利亚研究理事会;
关键词
NONLINEAR ELECTRODYNAMICS; SL(2; R); INVARIANCE; ASYMPTOTIC FREEDOM; GAUGE-THEORIES; ROTATIONS;
D O I
10.1140/epjc/s10052-023-11373-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study a system of n Abelian vector fields coupled to 1/2n(n + 1) complex scalars parametrising the Hermitian symmetric space Sp(2n, R)/U(n). This model is Weyl invariant and possesses the maximal non-compact duality group Sp(2n, R). Although both symmetries are anomalous in the quantum theory, they should be respected by the logarithmic divergent term (the induced action) of the effective action obtained by integrating out the vector fields. We compute this induced action and demonstrate its Weyl and Sp(2n, R) invariance. The resulting conformal higher derivative sigma-model on Sp(2n, R)/U(n) is generalised to the cases where the fields take their values in (i) an arbitrary Kahler space; and (ii) an arbitrary Riemannian manifold. In both cases, the sigma-model Lagrangian generates a Weyl anomaly satisfying the Wess-Zumino consistency condition.
引用
收藏
页数:12
相关论文
共 50 条