Is the generalizability of a developed artificial intelligence algorithm for COVID-19 on chest CT sufficient for clinical use? Results from the International Consortium for COVID-19 Imaging AI (ICOVAI)

被引:3
|
作者
Topff, Laurens [1 ,2 ]
Lipman, Kevin B. W. Groot [1 ,2 ,3 ]
Guffens, Frederic [4 ]
Wittenberg, Rianne [1 ]
Bartels-Rutten, Annemarieke [1 ]
van Veenendaal, Gerben [5 ]
Hess, Mirco [5 ]
Lamerigts, Kay [5 ]
Wakkie, Joris [5 ]
Ranschaert, Erik [6 ,7 ]
Trebeschi, Stefano [1 ]
Visser, Jacob [8 ]
Beets-Tan, Regina G. H. [1 ,2 ,9 ]
机构
[1] Netherlands Canc Inst, Dept Radiol, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
[2] Maastricht Univ, GROW Sch Oncol & Reprod, Univ Singel 40, NL-6229 ER Maastricht, Netherlands
[3] Netherlands Canc Inst, Dept Thorac Oncol, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
[4] Univ Hosp Leuven, Dept Radiol, Herestr 49, B-3000 Leuven, Belgium
[5] Aidence, Amsterdam, Netherlands
[6] St Nikolaus Hosp, Dept Radiol, Hufengasse 4-8, B-4700 Eupen, Belgium
[7] Univ Ghent, C Heymanslaan 10, B-9000 Ghent, Belgium
[8] Univ Med Ctr Rotterdam, Dept Radiol & Nucl Med, Erasmus MC, Dr Molewaterpl 40, NL-3015 GD Rotterdam, Netherlands
[9] Univ Southern Denmark, Inst Reg Hlth Res, Campusvej 55, DK-5230 Odense, Denmark
基金
欧盟地平线“2020”;
关键词
Artificial intelligence; COVID-19; Computed tomography; Reproducibility of results; Validation study; SEVERITY SCORE; MULTICENTER; VALIDATION; SYSTEM;
D O I
10.1007/s00330-022-09303-3
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesOnly few published artificial intelligence (AI) studies for COVID-19 imaging have been externally validated. Assessing the generalizability of developed models is essential, especially when considering clinical implementation. We report the development of the International Consortium for COVID-19 Imaging AI (ICOVAI) model and perform independent external validation.MethodsThe ICOVAI model was developed using multicenter data (n = 1286 CT scans) to quantify disease extent and assess COVID-19 likelihood using the COVID-19 Reporting and Data System (CO-RADS). A ResUNet model was modified to automatically delineate lung contours and infectious lung opacities on CT scans, after which a random forest predicted the CO-RADS score. After internal testing, the model was externally validated on a multicenter dataset (n = 400) by independent researchers. CO-RADS classification performance was calculated using linearly weighted Cohen's kappa and segmentation performance using Dice Similarity Coefficient (DSC).ResultsRegarding internal versus external testing, segmentation performance of lung contours was equally excellent (DSC = 0.97 vs. DSC = 0.97, p = 0.97). Lung opacities segmentation performance was adequate internally (DSC = 0.76), but significantly worse on external validation (DSC = 0.59, p < 0.0001). For CO-RADS classification, agreement with radiologists on the internal set was substantial (kappa = 0.78), but significantly lower on the external set (kappa = 0.62, p < 0.0001).ConclusionIn this multicenter study, a model developed for CO-RADS score prediction and quantification of COVID-19 disease extent was found to have a significant reduction in performance on independent external validation versus internal testing. The limited reproducibility of the model restricted its potential for clinical use. The study demonstrates the importance of independent external validation of AI models.
引用
收藏
页码:4249 / 4258
页数:10
相关论文
共 50 条
  • [1] Is the generalizability of a developed artificial intelligence algorithm for COVID-19 on chest CT sufficient for clinical use? Results from the International Consortium for COVID-19 Imaging AI (ICOVAI)
    Laurens Topff
    Kevin B. W. Groot Lipman
    Frederic Guffens
    Rianne Wittenberg
    Annemarieke Bartels-Rutten
    Gerben van Veenendaal
    Mirco Hess
    Kay Lamerigts
    Joris Wakkie
    Erik Ranschaert
    Stefano Trebeschi
    Jacob J. Visser
    Regina G. H. Beets-Tan
    [J]. European Radiology, 2023, 33 : 4249 - 4258
  • [2] Application of artificial intelligence in chest imaging for COVID-19
    Kim, Eun Young
    Chung, Myung Jin
    [J]. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION, 2021, 64 (10): : 664 - 670
  • [3] Artificial Intelligence (AI) applications for COVID-19 pandemic
    Vaishya, Raju
    Javaid, Mohd
    Khan, Ibrahim Haleem
    Haleem, Abid
    [J]. DIABETES & METABOLIC SYNDROME-CLINICAL RESEARCH & REVIEWS, 2020, 14 (04) : 337 - 339
  • [4] Accuracy of Chest CT for Differentiating COVID-19 from COVID-19 Mimics
    Saehn, Marwin-Jonathan
    Yueksel, Can
    Keil, Sebastian
    Zeisberger, Marcel P.
    Post, Manuel
    Kleines, Michael
    Brokmann, Joerg Christian
    Huebel, Christian
    Kuhl, Christiane K.
    Isfort, Peter
    Schulze-Hagen, Maximilian Franz
    [J]. ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2021, 193 (09): : 1081 - 1091
  • [5] Review on Diagnosis of COVID-19 from Chest CT Images Using Artificial Intelligence
    Ozsahin, Ilker
    Sekeroglu, Boran
    Musa, Musa Sani
    Mustapha, Mubarak Taiwo
    Ozsahin, Dilber Uzun
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2020, 2020 (2020)
  • [6] Artificial intelligence for prediction of COVID-19 progression using CT imaging and clinical data
    Robin Wang
    Zhicheng Jiao
    Li Yang
    Ji Whae Choi
    Zeng Xiong
    Kasey Halsey
    Thi My Linh Tran
    Ian Pan
    Scott A. Collins
    Xue Feng
    Jing Wu
    Ken Chang
    Lin-Bo Shi
    Shuai Yang
    Qi-Zhi Yu
    Jie Liu
    Fei-Xian Fu
    Xiao-Long Jiang
    Dong-Cui Wang
    Li-Ping Zhu
    Xiao-Ping Yi
    Terrance T. Healey
    Qiu-Hua Zeng
    Tao Liu
    Ping-Feng Hu
    Raymond Y. Huang
    Yi-Hui Li
    Ronnie A. Sebro
    Paul J. L. Zhang
    Jianxin Wang
    Michael K. Atalay
    Wei-Hua Liao
    Yong Fan
    Harrison X. Bai
    [J]. European Radiology, 2022, 32 : 205 - 212
  • [7] Artificial intelligence for prediction of COVID-19 progression using CT imaging and clinical data
    Wang, Robin
    Jiao, Zhicheng
    Li Yang
    Choi, Ji Whae
    Xiong, Zeng
    Halsey, Kasey
    Tran, Thi My Linh
    Pan, Ian
    Collins, Scott A.
    Feng, Xue
    Wu, Jing
    Chang, Ken
    Shi, Lin-Bo
    Yang, Shuai
    Yu, Qi-Zhi
    Liu, Jie
    Fu, Fei-Xian
    Jiang, Xiao-Long
    Wang, Dong-Cui
    Zhu, Li-Ping
    Yi, Xiao-Ping
    Healey, Terrance T.
    Zeng, Qiu-Hua
    Liu, Tao
    Hu, Ping-Feng
    Huang, Raymond Y.
    Li, Yi-Hui
    Sebro, Ronnie A.
    Zhang, Paul J. L.
    Wang, Jianxin
    Atalay, Michael K.
    Liao, Wei-Hua
    Fan, Yong
    Bai, Harrison X.
    [J]. EUROPEAN RADIOLOGY, 2022, 32 (01) : 205 - 212
  • [8] The Applications of Artificial Intelligence in Chest Imaging of COVID-19 Patients: A Literature Review
    Laino, Maria Elena
    Ammirabile, Angela
    Posa, Alessandro
    Cancian, Pierandrea
    Shalaby, Sherif
    Savevski, Victor
    Neri, Emanuele
    [J]. DIAGNOSTICS, 2021, 11 (08)
  • [9] Indiscriminate use of CT chest imaging during the COVID-19 pandemic
    Khashoo, R.
    Vimalesvaran, S.
    Tewari, D.
    Khashu, S.
    Khashu, M.
    [J]. CLINICAL RADIOLOGY, 2022, 77 (04) : 316 - 317
  • [10] Correspondence on artificial intelligence algorithm for COVID-19 pneumonia
    Sookaromdee, Pathum
    Wiwanitkit, Viroj
    [J]. JAPANESE JOURNAL OF RADIOLOGY, 2022, 40 (08) : 859 - 859