Psychological barriers and option pricing in a local volatility model

被引:1
|
作者
Li, Dan [1 ]
Liu, Lixin [2 ]
Xu, Guangli [2 ]
机构
[1] Peking Univ, Sch Econ, Beijing 100029, Peoples R China
[2] Univ Int Business & Econ, Sch Stat, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Psychological barrier; Local volatility model; Laplace transform; Empirical study; STOCK-MARKET;
D O I
10.1016/j.najef.2022.101864
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper, we investigate the possible existence of psychological barriers in the SSE 50 Index and find that the volatility of the index returns and the implied volatility around psychological barriers are significantly different. To capture this special behavior, a local volatility model (LVM) is introduced, and the price of the European call option is derived under this framework with the help of the Laplace transform approach. We also report the LVM's empirical and delta hedging performance relative to the Black-Scholes (BS) model, constant elasticity of variance (CEV) model and Jang et al.'s threshold model and find that for 50ETF and S&P 500 option pricing, the LVM is superior to the other three models.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] PSYCHOLOGICAL BARRIERS AND OPTION PRICING
    Jang, Bong-Gyu
    Kim, Changki
    Kim, Kyeong Tae
    Lee, Seungkyu
    Shin, Dong-Hoon
    [J]. JOURNAL OF FUTURES MARKETS, 2015, 35 (01) : 52 - 74
  • [2] Pricing double volatility barriers option under stochastic volatility
    Han, Yuecai
    Liu, Chunyang
    Song, Qingshuo
    [J]. STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2021, 93 (04) : 625 - 645
  • [3] Barrier Option Pricing with Model Averaging Methods under Local Volatility Models
    Kim, Namhyoung
    Jung, Kyu-Hwan
    Lee, Jaewook
    Han, Gyu-Sik
    [J]. INDUSTRIAL ENGINEERING AND MANAGEMENT SYSTEMS, 2011, 10 (01): : 84 - 94
  • [4] Option pricing under hybrid stochastic and local volatility
    Choi, Sun-Yong
    Fouque, Jean-Pierre
    Kim, Jeong-Hoon
    [J]. QUANTITATIVE FINANCE, 2013, 13 (08) : 1157 - 1165
  • [5] A fast calibrating volatility model for option pricing
    Date, Paresh
    Islyaev, Suren
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2015, 243 (02) : 599 - 606
  • [6] CAM Stochastic Volatility Model for Option Pricing
    Huang, Wanwan
    Ewald, Brian
    Oekten, Giray
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [7] Homoskedastis or Heteroskedastis Volatility Model for Option Pricing?
    Hendrawan, Riko
    [J]. APPLIED ECONOMICS, BUSINESS AND DEVELOPMENT, 2010, : 221 - 224
  • [8] An empirical model of volatility of returns and option pricing
    McCauley, JL
    Gunaratne, GH
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 329 (1-2) : 178 - 198
  • [9] Option pricing in a stochastic delay volatility model
    Julia, Alvaro Guinea
    Caro-Carretero, Raquel
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, : 1927 - 1951
  • [10] VIX Option Pricing for Non-Parameter Heston Stochastic Local Volatility Model
    Ma, Junmei
    Gong, Jiaxing
    Xu, Wei
    [J]. JOURNAL OF DERIVATIVES, 2024, 31 (03): : 50 - 73