Matrix-Variate Hidden Markov Regression Models: Fixed and Random Covariates

被引:1
|
作者
Tomarchio, Salvatore D. [1 ]
Punzo, Antonio [1 ]
Maruotti, Antonello [2 ]
机构
[1] Univ Catania, Dept Econ & Business, Catania, Italy
[2] LUMSA Univ, Dept Law Econ Polit & Modern Languages, Rome, Italy
关键词
Matrix-variate; Hidden Markov models; Parsimonious models; LABOR-FORCE PARTICIPATION; FINITE MIXTURES; MAXIMUM-LIKELIHOOD; UNEMPLOYMENT; ALGORITHM;
D O I
10.1007/s00357-023-09438-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two families of matrix-variate hidden Markov regression models (MV-HMRMs) are here introduced. The distinction between them relies on the role of the covariates, which can be treated as fixed or random. Parsimony is achieved by using the eigen-decomposition of the components' covariance matrices. This generates a different number of parsimonious models between the two families: 98 MV-HMRMs with fixed covariates and 9604 MV-HMRMs with random covariates. ECM algorithms are discussed for parameter estimation and, because of the high number of parsimonious models, convenient initialization, and fitting strategies are proposed. Our models are first applied to simulated data, and then to a four-way real dataset concerning the relationship between unemployment and labor force participation in the Italian provinces.
引用
收藏
页码:429 / 454
页数:26
相关论文
共 50 条
  • [1] Parsimonious hidden Markov models for matrix-variate longitudinal data
    Tomarchio, Salvatore D.
    Punzo, Antonio
    Maruotti, Antonello
    [J]. STATISTICS AND COMPUTING, 2022, 32 (03)
  • [2] Matrix-variate time series modelling with hidden Markov models
    Asilkalkan, Abdullah
    Zhu, Xuwen
    [J]. STAT, 2021, 10 (01):
  • [3] Parsimonious hidden Markov models for matrix-variate longitudinal data
    Salvatore D. Tomarchio
    Antonio Punzo
    Antonello Maruotti
    [J]. Statistics and Computing, 2022, 32
  • [4] On matrix-variate regression analysis
    Viroli, Cinzia
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 111 : 296 - 309
  • [5] Information matrix for hidden Markov models with covariates
    Bartolucci, Francesco
    Farcomeni, Alessio
    [J]. STATISTICS AND COMPUTING, 2015, 25 (03) : 515 - 526
  • [6] Information matrix for hidden Markov models with covariates
    Francesco Bartolucci
    Alessio Farcomeni
    [J]. Statistics and Computing, 2015, 25 : 515 - 526
  • [7] Multivariate hidden Markov regression models: random covariates and heavy-tailed distributions
    Punzo, Antonio
    Ingrassia, Salvatore
    Maruotti, Antonello
    [J]. STATISTICAL PAPERS, 2021, 62 (03) : 1519 - 1555
  • [8] Multivariate hidden Markov regression models: random covariates and heavy-tailed distributions
    Antonio Punzo
    Salvatore Ingrassia
    Antonello Maruotti
    [J]. Statistical Papers, 2021, 62 : 1519 - 1555
  • [9] Matrix-variate logistic regression with measurement error
    Fang, Junhan
    Yi, Grace Y.
    [J]. BIOMETRIKA, 2021, 108 (01) : 83 - 97
  • [10] Dynamic Matrix-Variate Graphical Models
    Carvalho, Carlos M.
    West, Mike
    [J]. BAYESIAN ANALYSIS, 2007, 2 (01): : 69 - 97