Atomic potential energy uncertainty in machine-learning interatomic potentials and thermal transport in solids with atomic diffusion

被引:4
|
作者
Zhu, Yifan [1 ,2 ,3 ]
Dong, Erting [3 ,4 ]
Yang, Hongliang [1 ,2 ,3 ]
Xi, Lili [5 ,6 ]
Yang, Jiong [5 ,6 ]
Zhang, Wenqing [1 ,3 ,7 ,8 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine M, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
[4] Henan Inst Technol, Coll Mat Sci & Engn, Xinxiang 453000, Henan, Peoples R China
[5] Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China
[6] Zhejiang Lab, Hangzhou 311100, Zhejiang, Peoples R China
[7] Southern Univ Sci & Technol, Shenzhen Municipal Key Lab Adv Quantum Mat & Devic, Shenzhen 518055, Guangdong, Peoples R China
[8] Southern Univ Sci & Technol, Guangdong Prov Key Lab Computat Sci & Mat Design, Shenzhen 518055, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
IRREVERSIBLE-PROCESSES; LIQUID; CONDUCTIVITY; MG2SI;
D O I
10.1103/PhysRevB.108.014108
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermal transport simulations have attracted wide attention in recent years, and one standard approach is to use the Green-Kubo method based on machine-learning interatomic potentials and equilibrium molecular dynamics (GK-MLIP-EMD). In this work, we focus on the lattice thermal conductivities & kappa;Ls for solids with atomic diffusion by taking & beta;-Cu2-xSe (0 x 0.05) as an example. Surprisingly, the GK-MLIP-EMD approach fails in the evaluation of & kappa;Ls for & beta;-Cu1.95Se, whereas the direct method based on nonequilibrium molecular dynamics reliably predicts these values instead. The failure of GK-MLIP-EMD for & beta;-Cu1.95Se could be attributed to the ambiguous projection of the local atomic potential energy Ui in MLIPs, exacerbated by the Cu diffusion at elevated temperatures. The Cu diffusion in & beta;-Cu1.95Se greatly increases the ratio of the convective term and the uncertainty of the conductive term. These influences are considered negligible in crystalline solids. Our findings imply that the ambiguous definition of Ui in MLIPs breaks down the applicability of the GK-MLIP-EMD approach to & kappa;L prediction for solids with severe atomic diffusion.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Cartesian atomic cluster expansion for machine learning interatomic potentials
    Cheng, Bingqing
    [J]. NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [3] Exploring diffusion behavior of superionic materials using machine-learning interatomic potentials
    Hsing, Cheng-Rong
    Nguyen, Duc-Long
    Wei, Ching -Ming
    [J]. PHYSICAL REVIEW MATERIALS, 2024, 8 (04):
  • [4] Exploring a potential energy surface by machine learning for characterizing atomic transport
    Kanamori, Kenta
    Toyoura, Kazuaki
    Honda, Junya
    Hattori, Kazuki
    Seko, Atsuto
    Karasuyama, Masayuki
    Shitara, Kazuki
    Shiga, Motoki
    Kuwabara, Akihide
    Takeuchi, Ichiro
    [J]. PHYSICAL REVIEW B, 2018, 97 (12)
  • [5] Sensitivity and dimensionality of atomic environment representations used for machine learning interatomic potentials
    Onat, Berk
    Ortner, Christoph
    Kermode, James R.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (14):
  • [6] Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials
    Imbalzano, Giulio
    Anelli, Andrea
    Giofre, Daniele
    Klees, Sinja
    Behler, Joerg
    Ceriotti, Michele
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (24):
  • [7] Exploring thermal expansion of carbon-based nanosheets by machine-learning interatomic potentials
    Mortazavi, Bohayra
    Rajabpour, Ali
    Zhuang, Xiaoying
    Rabczuk, Timon
    Shapeev, Alexander, V
    [J]. CARBON, 2022, 186 : 501 - 508
  • [8] Recent advances in lattice thermal conductivity calculation using machine-learning interatomic potentials
    Arabha, Saeed
    Aghbolagh, Zahra Shokri
    Ghorbani, Khashayar
    Hatam-Lee, S. Milad
    Rajabpour, Ali
    [J]. JOURNAL OF APPLIED PHYSICS, 2021, 130 (21)
  • [9] A Hessian-based assessment of atomic forces for training machine learning interatomic potentials
    Herbold, Marius
    Behler, Joerg
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (11):
  • [10] Toward fast and accurate machine learning interatomic potentials for atomic layer deposition precursors
    Kang, Seungpyo
    Kim, Joonchul
    Park, Taehyun
    Won, Joonghee
    Baik, Chul
    Han, Jungim
    Min, Kyoungmin
    [J]. MATERIALS TODAY ADVANCES, 2024, 21