VILENKIN-FOURIER SERIES IN VARIABLE LEBESGUE SPACES

被引:0
|
作者
Adamadze, Daviti [1 ]
Kopaliani, Tengiz [2 ]
机构
[1] Javakhishvili Tbilisi State Univ, Fac Exact & Nat Sci, 13 Univ St, Tbilisi 0143, Georgia
[2] Javakhishvili Tbilisi State Univ, Fac Exact & Nat Sci, 13 Univ St, Tbilisi 0143, Georgia
来源
基金
美国国家科学基金会;
关键词
Vilenkin-Fourier series; maximal operator; variable exponent Lebesgue space; WEIGHTED NORM INEQUALITIES;
D O I
10.7153/mia-2023-26-60
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S-n f be the nth partial sum of the Vilenkin-Fourier series of f is an element of L-1(G). For 1 < p(-) <= p(+) < infinity, we characterize all exponent p(<middle dot>) such that if f is an element of L-p(<middle dot>)(G), S-n f converges to fin L-p(<middle dot>)(G).
引用
收藏
页码:977 / 993
页数:17
相关论文
共 50 条