Spatiotemporal Forecasting of the Groundwater Quality for Irrigation Purposes, Using Deep Learning Method: Long Short-Term Memory (LSTM)

被引:19
|
作者
Gorgij, A. Docheshmeh [1 ]
Askari, Gh [2 ]
Taghipour, A. A. [2 ]
Jami, M. [1 ]
Mirfardi, M. [2 ]
机构
[1] Univ Sistan & Baluchestan, Ind & Min Fac khash, Min Engn Grp, Zahedan, Iran
[2] Damghan Univ, Sch Earth Sci, Damghan, Iran
关键词
Irrigation water quality; SAR; Deep learning method; Long-short memory; Pollutant; WATER-QUALITY; RIVER; AQUIFER; REGION;
D O I
10.1016/j.agwat.2022.108088
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Present study was conducted to predict the spatiotemporal groundwater suitability for irrigation purpose through deep learning method, Long-Short term memory (LSTM), in northwest of Iran. Sodium Adsorption Ratio (SAR) as a crucial irrigation water quality criterion for 101 sampling point for an 18-year data period from 2002 to 2019, was utilized as the input for deep learning model in order to forecast the irrigation water quality for the next year, 2020. To evaluate the model accuracy in spatiotemporal data forecasting, performance criteria such as Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and R were used which approved the model accuracy by 1.212, 0.312 and 0.89 of MAPE, RMSE and R, respectively. On the other hand, the model capability was assessed by RBIAS and generalization ability (GA), which results showed that LSTM model underestimated the targets with RBIAS equals to about 1.539, while had an acceptable GA, equals to 1.1832. Considering the carried-out map of irrigation water quality for the study area it was revealed that about 78% have the desirable to acceptable quality for irrigation and the about 22% are moderate to non-acceptable. The most non-acceptable points are juxtaposed to the residential area which shows the anthropogenic effect on groundwater quality through the fertilizers and the other pollutants, infiltered into the groundwater resources.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Prediction of groundwater levels using a long short-term memory (LSTM) technique
    Thakur, Abhinav
    Chandel, Abhishish
    Shankar, Vijay
    JOURNAL OF HYDROINFORMATICS, 2024, 27 (01) : 51 - 68
  • [2] Forecasting salmon market volatility using long short-term memory (LSTM)
    Zitti, Mikaella
    AQUACULTURE ECONOMICS & MANAGEMENT, 2024, 28 (01) : 143 - 175
  • [3] Power Demand Forecasting Using Long Short-Term Memory (LSTM) Deep-Learning Model for Monitoring Energy Sustainability
    Choi, Eunjeong
    Cho, Soohwan
    Kim, Dong Keun
    SUSTAINABILITY, 2020, 12 (03)
  • [4] Groundwater quality forecasting using machine learning algorithms for irrigation purposes
    El Bilali, Ali
    Taleb, Abdeslam
    Brouziyne, Youssef
    AGRICULTURAL WATER MANAGEMENT, 2021, 245 (245)
  • [5] Reconstruction of missing groundwater level data by using Long Short-Term Memory (LSTM) deep neural network
    Vu, M. T.
    Jardani, A.
    Massei, N.
    Fournier, M.
    JOURNAL OF HYDROLOGY, 2021, 597
  • [6] Application of Deep Learning Long Short-Term Memory in Energy Demand Forecasting
    Al Khafaf, Nameer
    Jalili, Mandi
    Sokolowski, Peter
    ENGINEERING APPLICATIONS OF NEURAL NETWORKSX, 2019, 1000 : 31 - 42
  • [7] Forecasting Hourly Solar Irradiance Using Long Short-Term Memory (LSTM) Network
    Obiora, Chibuzor N.
    Ali, Ahmed
    Hasan, Ali N.
    2020 11TH INTERNATIONAL RENEWABLE ENERGY CONGRESS (IREC), 2020,
  • [8] Forecasting Water Demand With the Long Short-Term Memory Deep Learning Mode
    Xu, Junhua
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGIES AND SYSTEMS APPROACH, 2023, 17 (01)
  • [9] Ionospheric TEC Forecasting over an Indian Low Latitude Location Using Long Short-Term Memory (LSTM) Deep Learning Network
    Reddybattula, Kanaka Durga
    Nelapudi, Likhita Sai
    Moses, Mefe
    Devanaboyina, Venkata Ratnam
    Ali, Masood Ashraf
    Jamjareegulgarn, Punyawi
    Panda, Sampad Kumar
    UNIVERSE, 2022, 8 (11)
  • [10] FUEL MOISTURE CONTENT FORECASTING USING LONG SHORT-TERM MEMORY(LSTM) MODEL
    Kang, Zhenyu
    Jiao, Miao
    Zhou, Zijie
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5672 - 5675