Performance Evaluation of LiBr-H2O and LiCl-H2O Working Pairs in Compression-Assisted Double-Effect Absorption Refrigeration Systems for Utilization of Low-Temperature Heat Sources

被引:0
|
作者
Lei, Tong [1 ]
Qian, Zuoqin [1 ]
Ren, Jie [1 ]
机构
[1] Wuhan Univ Technol, Sch Naval Architecture Ocean & Energy Power Engn, Wuhan 430063, Peoples R China
关键词
double-effect absorption refrigeration; compression-assisted; series parallel; reverse parallel; LiCl-H2O; LiBr-H2O; WASTE HEAT; MULTIOBJECTIVE OPTIMIZATION; THERMOECONOMIC ANALYSIS; H2O-LIBR SYSTEMS; COOLING SYSTEMS; EXERGY; DRIVEN; ENERGY; SINGLE; FLUIDS;
D O I
10.3390/en16166036
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
To improve the performance of conventional double-effect absorption refrigeration systems (DEARS), new series parallel (SP) and reverse parallel (RP) configurations using LiCl-H2O and LiBr-H2O as working fluids, combined with two vapor compressors (VC), are proposed and thermodynamically evaluated. The effects of the distribution ratio (D) and compression ratio (CR) on the system performance are discussed. The results reveal that both configurations can extend the operation ranges of DEARS effectively at a higher distribution ratio, and the performance for low-grade heat source utilization is improved substantially by the use of VC. The compressor positioned between the evaporator and absorber is superior to that between the high-pressure generator and low-pressure generator because of the better performance improvement and larger operating ranges. In all the examined cases, LiCl-H2O systems perform better than LiBr-H2O systems in terms of the coefficient of performance (COP) and exergetic efficiency. At the higher CR of approximately 2, the compression-assisted DEARS can be driven by heat sources below 100 degrees C with high levels of COPs above 1.16 for the LiBr-H2O working pair and 1.29 for the LiCl-H2O working pair. The system can operate at the optimum condition by adjusting the CR values according to the characteristics of the heat sources.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A novel low-grade heat-driven absorption refrigeration system with LiCl-H2O and LiBr-H2O working pairs
    She, Xiaohui
    Yin, Yonggao
    Xu, Mengfei
    Zhang, Xiaosong
    [J]. INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2015, 58 : 219 - 234
  • [2] Thermodynamic performance and comparison of solar assisted double effect absorption cooling system with LiCl-H2O and LiBr-H2O working fluid
    Pandya, Bhargav
    Modi, Nishant
    Upadhyai, Ravi
    Patel, Jatin
    [J]. BUILDING SIMULATION, 2019, 12 (06) : 1063 - 1075
  • [3] Thermodynamic Evaluation of LiCl-H2O and LiBr-H2O Absorption Refrigeration Systems Based on a Novel Model and Algorithm
    Ren, Jie
    Qian, Zuoqin
    Yao, Zhimin
    Gan, Nianzhong
    Zhang, Yujia
    [J]. ENERGIES, 2019, 12 (15)
  • [4] Thermodynamic performance and comparison of solar assisted double effect absorption cooling system with LiCl-H2O and LiBr-H2O working fluid
    Bhargav Pandya
    Nishant Modi
    Ravi Upadhyai
    Jatin Patel
    [J]. Building Simulation, 2019, 12 : 1063 - 1075
  • [5] Thermodynamic modelling of a double-effect LiBr-H2O absorption refrigeration cycle
    A. Iranmanesh
    M. A. Mehrabian
    [J]. Heat and Mass Transfer, 2012, 48 : 2113 - 2123
  • [6] Exergetic and energetic comparison of LiCl-H2O and LiBr-H2O working pairs in a solar absorption cooling system
    Bellos, Evangelos
    Tzivanidis, Christos
    Antonopoulos, Kimon A.
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2016, 123 : 453 - 461
  • [7] Thermodynamic modelling of a double-effect LiBr-H2O absorption refrigeration cycle
    Iranmanesh, A.
    Mehrabian, M. A.
    [J]. HEAT AND MASS TRANSFER, 2012, 48 (12) : 2113 - 2123
  • [8] Energy and exergy analysis of a double effect LiBr-H2O and LiCl-H2O chillers
    Kilic, M.
    Ravul, H. B.
    [J]. BULGARIAN CHEMICAL COMMUNICATIONS, 2016, 48 : 312 - 317
  • [9] Performance Enhancement in LiCl-H2O and LiBr-H2O Absorption Cooling Systems Through an Advanced Exergy Analysis
    Mody, Parth
    Patel, Jatin
    Modi, Nishant
    Pandya, Bhargav
    [J]. INTERNATIONAL JOURNAL OF AIR-CONDITIONING AND REFRIGERATION, 2021, 29 (01)
  • [10] Solid-liquid phase equilibrium in the systems of LiBr-H2O and LiCl-H2O
    Patek, J.
    Klomfar, J.
    [J]. FLUID PHASE EQUILIBRIA, 2006, 250 (1-2) : 138 - 149