Vibration and infrared thermography based multiple fault diagnosis of bearing using deep learning

被引:50
|
作者
Mian, Tauheed [1 ]
Choudhary, Anurag [2 ]
Fatima, Shahab [1 ]
机构
[1] Indian Inst Technol, Ctr Automot Res & Tribol, Delhi, India
[2] Indian Inst Technol, Sch Interdisciplinary Res SIRe, Delhi, India
关键词
Fault detection; infrared thermography; continuous wavelet transform; fault classification; INDUCTION-MOTORS; MACHINERY; ALGORITHM; MODELS;
D O I
10.1080/10589759.2022.2118747
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The occurrence of multiple faults is a practical problem in the bearings of rotating machines, and early diagnosis of such issues in an intelligent manner is vital in the era of industry 4.0. The present work investigated various combinations of bearing faults, including dual and multiple fault conditions. Two prevalent fault diagnosis methods were employed: vibration monitoring using time-frequency scalograms extracted through Continuous Wavelet Transform (CWT) and a non-invasive Infrared Thermography (IRT). A 2-D Convolutional Neural Network (CNN) was used to classify various combinations of fault conditions through automated feature extraction. The proposed methodology was validated at two constant speed conditions of 19 Hz and 29 Hz and continuously accelerated and decelerated speed conditions in the range of 19 Hz - 29 Hz. Adequate accuracy was achieved in both dual and multiple fault conditions in the case of vibration-based fault diagnosis, with a range of 99.39 % to 99.97 %. Meanwhile, in the case of proposed IRT-based fault diagnosis, 100 % classification accuracy was achieved for dual and multiple faults in all conditions. These results signify the robustness and reliability of the proposed methodology for dual and multiple fault diagnosis in bearings at constant and varying speed conditions.
引用
收藏
页码:275 / 296
页数:22
相关论文
共 50 条
  • [1] Assessment of Machine and Deep Learning Approaches for Fault Diagnosis in Photovoltaic Systems Using Infrared Thermography
    Boubaker, Sahbi
    Kamel, Souad
    Ghazouani, Nejib
    Mellit, Adel
    REMOTE SENSING, 2023, 15 (06)
  • [2] Vibration and acoustic signal-based bearing fault diagnosis in CNC machine using an improved deep learning
    Mohmad Iqbal
    A. K. Madan
    Naseem Ahmad
    Iran Journal of Computer Science, 2024, 7 (4) : 723 - 733
  • [3] Deep Learning Based Approach for Bearing Fault Diagnosis
    He, Miao
    He, David
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2017, 53 (03) : 3057 - 3065
  • [4] Motor Bearing Fault Diagnosis Based on Deep Learning
    Zhang, Wei
    Hu, Yong
    Zeng, Deliang
    Luo, Wei
    Li, Gengda
    Liu, Miao
    2019 20TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), 2019, : 8 - 14
  • [5] Fault diagnosis of motor bearing based on deep learning
    Jian, Yifan
    Qing, Xianguo
    He, Liang
    Zhao, Yang
    Qi, Xiao
    Du, Ming
    ADVANCES IN MECHANICAL ENGINEERING, 2019, 11 (09)
  • [6] A survey on Deep Learning based bearing fault diagnosis
    Hoang, Duy-Tang
    Kang, Hee-Jun
    NEUROCOMPUTING, 2019, 335 : 327 - 335
  • [7] Passive Thermography Based Bearing Fault Diagnosis Using Transfer Learning With Varying Working Conditions
    Choudhary, Anurag
    Mian, Tauheed
    Fatima, Shahab
    Panigrahi, B. K.
    IEEE SENSORS JOURNAL, 2023, 23 (05) : 4628 - 4637
  • [8] Current-Based Bearing Fault Diagnosis Using Deep Learning Algorithms
    Barcelos, Andre S.
    Cardoso, Antonio J. Marques
    ENERGIES, 2021, 14 (09)
  • [9] Infrared Thermography-Based Fault Diagnosis of Induction Motor Bearings Using Machine Learning
    Choudhary, Anurag
    Goyal, Deepam
    Letha, Shimi Sudha
    IEEE SENSORS JOURNAL, 2021, 21 (02) : 1727 - 1734
  • [10] Bearing Fault Diagnosis Using Machine Learning and Deep Learning Techniques
    Dhanush, N. Sai
    Ambika, P. S.
    FOURTH CONGRESS ON INTELLIGENT SYSTEMS, VOL 1, CIS 2023, 2024, 868 : 309 - 321