An Improved Anchor-Free Nodule Detection System Using Feature Pyramid Network
被引:1
|
作者:
Song, Wenjia
论文数: 0引用数: 0
h-index: 0
机构:
Fac Informat Technol & Elect Engn, St Lucia, Qld 4072, AustraliaFac Informat Technol & Elect Engn, St Lucia, Qld 4072, Australia
Song, Wenjia
[1
]
Tang, Fangfang
论文数: 0引用数: 0
h-index: 0
机构:
Fac Informat Technol & Elect Engn, St Lucia, Qld 4072, AustraliaFac Informat Technol & Elect Engn, St Lucia, Qld 4072, Australia
Tang, Fangfang
[1
]
Marshall, Henry
论文数: 0引用数: 0
h-index: 0
机构:
Prince Charles Hosp, Fac Med, UQ Thorac Res Ctr, Chermside, Qld 4032, Australia
Prince Charles Hosp, Dept Thorac Med, Chermside, Qld 4032, AustraliaFac Informat Technol & Elect Engn, St Lucia, Qld 4072, Australia
Marshall, Henry
[2
,3
]
Fong, Kwun M.
论文数: 0引用数: 0
h-index: 0
机构:
Prince Charles Hosp, Fac Med, UQ Thorac Res Ctr, Chermside, Qld 4032, Australia
Prince Charles Hosp, Dept Thorac Med, Chermside, Qld 4032, AustraliaFac Informat Technol & Elect Engn, St Lucia, Qld 4072, Australia
Fong, Kwun M.
[2
,3
]
Liu, Feng
论文数: 0引用数: 0
h-index: 0
机构:
Fac Informat Technol & Elect Engn, St Lucia, Qld 4072, AustraliaFac Informat Technol & Elect Engn, St Lucia, Qld 4072, Australia
Liu, Feng
[1
]
机构:
[1] Fac Informat Technol & Elect Engn, St Lucia, Qld 4072, Australia
[2] Prince Charles Hosp, Fac Med, UQ Thorac Res Ctr, Chermside, Qld 4032, Australia
[3] Prince Charles Hosp, Dept Thorac Med, Chermside, Qld 4032, Australia
Lung cancer (LC) is the leading cause of cancer death. Detecting LC at the earliest stage facilitates curative treatment options and will improve mortality rates. Computer-aided detection (CAD) systems can help improve LC diagnostic accuracy. In this work, we propose a deep-learning-based lung nodule detection method. The proposed CAD system is a 3D anchor-free nodule detection (AFND) method based on a feature pyramid network (FPN). The deep learning-based CAD system has several novel properties: (1) It achieves region proposal and nodule classification in a single network, forming a one-step detection pipeline and reducing operation time. (2) An adaptive nodule modelling method was designed to detect nodules of various sizes. (3) The proposed AFND also establishes a novel center point selection mechanism for better classification. (4) Based on the new nodule model, a composite loss function integrating cosine similarity (CS) loss and SmoothL1loss was designed to further improve the nodule detection accuracy. Experimental results show that the AFND outperforms other similar nodule detection systems on the LUNA 16 dataset.
机构:
Guangdong Univ Technol, Sch Comp Sci & Technol, Guangzhou 510006, Guangdong, Peoples R ChinaGuangdong Univ Technol, Sch Comp Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China
Ding, Guanzhi
Zhao, Xiushun
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R ChinaGuangdong Univ Technol, Sch Comp Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China
Zhao, Xiushun
Peng, Cai
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R ChinaGuangdong Univ Technol, Sch Comp Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China
Peng, Cai
Li, Li
论文数: 0引用数: 0
h-index: 0
机构:
Baiyun Power Grp Co Ltd, Guangzhou 510460, Guangdong, Peoples R ChinaGuangdong Univ Technol, Sch Comp Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China
Li, Li
Guo, Jing
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China
Guangdong Univ Technol, Smart Med Innovat Technol Ctr, Guangzhou 510006, Guangdong, Peoples R ChinaGuangdong Univ Technol, Sch Comp Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China
Guo, Jing
Li, Depei
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Collaborat Innovat Ctr Canc Med, Dept Neurosurg Neurooncol, State Key Lab Oncol South China,Canc Ctr, Guangzhou 510060, Guangdong, Peoples R ChinaGuangdong Univ Technol, Sch Comp Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China
Li, Depei
Jiang, Xiaobing
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Collaborat Innovat Ctr Canc Med, Dept Neurosurg Neurooncol, State Key Lab Oncol South China,Canc Ctr, Guangzhou 510060, Guangdong, Peoples R ChinaGuangdong Univ Technol, Sch Comp Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China
机构:
Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R ChinaBeijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
Xiang, Ye
Zhao, Boxuan
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R ChinaBeijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
Zhao, Boxuan
Zhao, Kuan
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R ChinaBeijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
机构:
Hong Kong Polytech Univ, Dept Elect & Elect Engn, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Elect & Elect Engn, Hong Kong, Peoples R China
Zhang, Cong
Xiao, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Elect & Elect Engn, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Elect & Elect Engn, Hong Kong, Peoples R China
Xiao, Jun
Yang, Cuixin
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Elect & Elect Engn, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Elect & Elect Engn, Hong Kong, Peoples R China
Yang, Cuixin
Zhou, Jingchun
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Maritime Univ, Sch Informat Sci & Technol, Dalian 116026, Peoples R ChinaHong Kong Polytech Univ, Dept Elect & Elect Engn, Hong Kong, Peoples R China
Zhou, Jingchun
Lam, Kin-Man
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Elect & Elect Engn, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Dept Elect & Elect Engn, Hong Kong, Peoples R China
Lam, Kin-Man
Wang, Qi
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Peoples R ChinaHong Kong Polytech Univ, Dept Elect & Elect Engn, Hong Kong, Peoples R China