Recent advances in spatially variable gene detection in spatial transcriptomics

被引:0
|
作者
Adhikari, Sikta Das [1 ,2 ]
Yang, Jiaxin [1 ]
Wang, Jianrong [1 ]
Cui, Yuehua [2 ]
机构
[1] Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Spatial transcriptomics; Spatially variable genes; Spatially resolved transcriptomics; Single cell RNA sequencing; FALSE DISCOVERY RATE; IDENTIFICATION; EXPRESSION; SEQ;
D O I
10.1016/j.csbj.2024.01.016
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
With the emergence of advanced spatial transcriptomic technologies, there has been a surge in research papers dedicated to analyzing spatial transcriptomics data, resulting in significant contributions to our understanding of biology. The initial stage of downstream analysis of spatial transcriptomic data has centered on identifying spatially variable genes (SVGs) or genes expressed with specific spatial patterns across the tissue. SVG detection is an important task since many downstream analyses depend on these selected SVGs. Over the past few years, a plethora of new methods have been proposed for the detection of SVGs, accompanied by numerous innovative concepts and discussions. This article provides a selective review of methods and their practical implementations, offering valuable insights into the current literature in this field.
引用
收藏
页码:883 / 891
页数:9
相关论文
共 50 条
  • [1] Evaluating spatially variable gene detection methods for spatial transcriptomics data
    Chen, Carissa
    Kim, Hani Jieun
    Yang, Pengyi
    [J]. GENOME BIOLOGY, 2024, 25 (01)
  • [2] Evaluating spatially variable gene detection methods for spatial transcriptomics data
    Carissa Chen
    Hani Jieun Kim
    Pengyi Yang
    [J]. Genome Biology, 25
  • [3] PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics
    Yuchen Liang
    Guowei Shi
    Runlin Cai
    Yuchen Yuan
    Ziying Xie
    Long Yu
    Yingjian Huang
    Qian Shi
    Lizhe Wang
    Jun Li
    Zhonghui Tang
    [J]. Nature Communications, 15
  • [4] PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics
    Liang, Yuchen
    Shi, Guowei
    Cai, Runlin
    Yuan, Yuchen
    Xie, Ziying
    Yu, Long
    Huang, Yingjian
    Shi, Qian
    Wang, Lizhe
    Li, Jun
    Tang, Zhonghui
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [5] Recent advances in spatially resolved transcriptomics: challenges and opportunities
    Lee, Jongwon
    Yoo, Minsu
    Choi, Jungmin
    [J]. BMB REPORTS, 2022, 55 (03) : 113 - 124
  • [6] Disparities in spatially variable gene calling highlight the need for benchmarking spatial transcriptomics methods
    Natalie Charitakis
    Agus Salim
    Adam T. Piers
    Kevin I. Watt
    Enzo R. Porrello
    David A. Elliott
    Mirana Ramialison
    [J]. Genome Biology, 24
  • [7] Disparities in spatially variable gene calling highlight the need for benchmarking spatial transcriptomics methods
    Charitakis, Natalie
    Salim, Agus
    Piers, Adam T.
    Watt, Kevin I.
    Porrello, Enzo R.
    Elliott, David A.
    Ramialison, Mirana
    [J]. GENOME BIOLOGY, 2023, 24 (01)
  • [8] A review of recent advances in spatially resolved transcriptomics data analysis
    Gao, Yue
    Gao, Ying-Lian
    Jing, Jing
    Li, Feng
    Zheng, Chun-Hou
    Liu, Jin-Xing
    [J]. NEUROCOMPUTING, 2024, 603
  • [9] Recent advances in high-throughput single-cell transcriptomics and spatial transcriptomics
    Shen, Xiaohan
    Zhao, Yichun
    Wang, Zhuo
    Shi, Qihui
    [J]. LAB ON A CHIP, 2022, 22 (24) : 4774 - 4791
  • [10] Spatially resolved transcriptomics: advances and applications
    Duan, Honglin
    Cheng, Tao
    Cheng, Hui
    [J]. BLOOD SCIENCE, 2023, 5 (01): : 1 - 14