Algebraic logic for the negation fragment of classical logic

被引:0
|
作者
Gonzalez, Luciano J. [1 ,2 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, Buenos Aires, Argentina
[2] Univ Nacl La Pampa, Fac Ciencias Exactas & Nat, Santa Rosa, Argentina
关键词
Classical logic; classical negation; algebraic logic; reduced matrix models; full models;
D O I
10.1093/jigpal/jzad007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The general aim of this article is to study the negation fragment of classical logic within the framework of contemporary (Abstract) Algebraic Logic. More precisely, we shall find the three classes of algebras that are canonically associated with a logic in Algebraic Logic, i.e. we find the classes Alg*, Alg and the intrinsic variety of the negation fragment of classical logic. In order to achieve this, firstly, we propose a Hilbert-style axiomatization for this fragment. Then, we characterize the reduced matrix models and the full generalized matrix models of this logic. Also, we classify the negation fragment in the Leibniz and Frege hierarchies.
引用
收藏
页码:517 / 533
页数:17
相关论文
共 50 条
  • [2] IF Modal Logic and Classical Negation
    Tulenheimo, Tero
    [J]. STUDIA LOGICA, 2014, 102 (01) : 41 - 66
  • [3] IF Modal Logic and Classical Negation
    Tero Tulenheimo
    [J]. Studia Logica, 2014, 102 : 41 - 66
  • [4] PARACONSISTENT NEGATION AND CLASSICAL NEGATION IN COMPUTATION TREE LOGIC
    Kamide, Norihiro
    Kaneiwa, Ken
    [J]. ICAART 2010: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 1: ARTIFICIAL INTELLIGENCE, 2010, : 464 - 469
  • [5] On the Expressive Power of IF-Logic with Classical Negation
    Figueira, Santiago
    Gorin, Daniel
    Grimson, Rafael
    [J]. LOGIC, LANGUAGE, INFORMATION AND COMPUTATION, WOLLIC 2011, 2011, 6642 : 135 - 145
  • [6] Price and Rumfitt on rejective negation and classical logic
    Gibbard, P
    [J]. MIND, 2002, 111 (442) : 297 - 303
  • [7] Classical Negation and Expansions of Belnap–Dunn Logic
    Michael De
    Hitoshi Omori
    [J]. Studia Logica, 2015, 103 : 825 - 851
  • [8] 'Classical' Negation in Nonmonotonic Reasoning and Logic Programming
    José Júlio Alferes
    Luís Moniz Pereira
    Teodor C. Przymusinski
    [J]. Journal of Automated Reasoning, 1998, 20 : 107 - 142
  • [9] 'Classical' negation in nonmonotonic reasoning and logic programming
    Alferes, JJ
    Pereira, LM
    Przymusinski, TC
    [J]. JOURNAL OF AUTOMATED REASONING, 1998, 20 (1-2) : 107 - 142
  • [10] Algebraic structures formalizing the logic with unsharp implication and negation
    Chajda, Ivan
    Laenger, Helmut
    [J]. LOGIC JOURNAL OF THE IGPL, 2023,