Learning Sequential Information in Task-Based fMRI for Synthetic Data Augmentation

被引:0
|
作者
Wang, Jiyao [1 ]
Dvornek, Nicha C. [1 ,2 ]
Staib, Lawrence H. [1 ,2 ]
Duncan, James S. [1 ,2 ,3 ,4 ]
机构
[1] Yale Univ, Biomed Engn, New Haven, CT 06511 USA
[2] Yale Sch Med, Radiol & Biomed Imaging, New Haven, CT 06511 USA
[3] Yale Univ, Elect Engn, New Haven, CT 06511 USA
[4] Yale Univ, Stat & Data Sci, New Haven, CT 06511 USA
关键词
Image synthesis; Data augmentation; Functional MRI; Machine learning; Medical imaging;
D O I
10.1007/978-3-031-44858-4_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Insufficiency of training data is a persistent issue in medical image analysis, especially for task-based functional magnetic resonance images (fMRI) with spatio-temporal imaging data acquired using specific cognitive tasks. In this paper, we propose an approach for generating synthetic fMRI sequences that can then be used to create augmented training datasets in downstream learning tasks. To synthesize high-resolution task-specific fMRI, we adapt the a-GAN structure, leveraging advantages of both GAN and variational autoencoder models, and propose different alternatives in aggregating temporal information. The synthetic images are evaluated from multiple perspectives including visualizations and an autism spectrum disorder (ASD) classification task. The results show that the synthetic task-based fMRI can provide effective data augmentation in learning the ASD classification task.
引用
收藏
页码:79 / 88
页数:10
相关论文
共 50 条
  • [1] A Dictionary Learning Approach for Signal Sampling in Task-Based fMRI for Reduction of Big Data
    Ge, Bao
    Li, Xiang
    Jiang, Xi
    Sun, Yifei
    Liu, Tianming
    [J]. FRONTIERS IN NEUROINFORMATICS, 2018, 12
  • [2] Opportunities and challenges in connectivity analysis for task-based fMRI comment on "connectivity analyses for task-based fMRI"
    Di, Xin
    Zhang, Li
    Zhang, Zhiguo
    Biswal, Bharat B.
    [J]. PHYSICS OF LIFE REVIEWS, 2024, 51 : 13 - 17
  • [3] Connectivity analyses for task-based fMRI
    Huang, Shenyang
    De Brigard, Felipe
    Cabeza, Roberto
    Davis, Simon W.
    [J]. PHYSICS OF LIFE REVIEWS, 2024, 49 : 139 - 156
  • [4] Blind Subgrouping of Task-based fMRI
    Fisher, Zachary F.
    Parsons, Jonathan
    Gates, Kathleen M.
    Hopfinger, Joseph B.
    [J]. PSYCHOMETRIKA, 2023, 88 (02) : 434 - 455
  • [5] Blind Subgrouping of Task-based fMRI
    Zachary F. Fisher
    Jonathan Parsons
    Kathleen M. Gates
    Joseph B. Hopfinger
    [J]. Psychometrika, 2023, 88 : 434 - 455
  • [6] Topological data analysis of task-based fMRI data from experiments on schizophrenia
    Stolz, Bernadette J.
    Emerson, Tegan
    Nahkuri, Satu
    Porter, Mason A.
    Harrington, Heather A.
    [J]. JOURNAL OF PHYSICS-COMPLEXITY, 2021, 2 (03):
  • [7] Toward open sharing of task-based fMRI data: the OpenfMRI project
    Poldrack, Russell A.
    Barch, Deanna M.
    Mitchell, Jason P.
    Wager, Tor D.
    Wagner, Anthony D.
    Devlin, Joseph T.
    Cumba, Chad
    Koyejo, Oluwasanmi
    Milham, Michael P.
    [J]. FRONTIERS IN NEUROINFORMATICS, 2013, 7
  • [8] Fast Convolutional Analysis of Task-Based fMRI Data for ADHD Detection
    Colonnese, Federica
    Di Luzio, Francecso
    Rosato, Antonello
    Panella, Massimo
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2023, PT II, 2023, 14135 : 364 - 375
  • [9] GLMdenoise: a fast, automated technique for denoising task-based fMRI data
    Kay, Kendrick N.
    Rokem, Ariel
    Winawer, Jonathan
    Dougherty, Robert F.
    Wandell, Brian A.
    [J]. FRONTIERS IN NEUROSCIENCE, 2013, 7
  • [10] Task-based learning
    Race, P
    [J]. MEDICAL EDUCATION, 2000, 34 (05) : 335 - 336