On the Dirichlet problem for the Schrödinger equation in the upper half-space

被引:5
|
作者
Li, Bo [1 ]
Shen, Tianjun [2 ]
Tan, Jian [3 ]
Wang, Aiting [4 ]
机构
[1] Jiaxing Univ, Coll Data Sci, Jiaxing 314001, Peoples R China
[2] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Peoples R China
[4] Qinghai Minzu Univ, Sch Math & Stat, Xining 810000, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Boundary value problem; Elliptic equation; Morrey function; Regularity; Variable exponent; MAXIMAL-FUNCTION CHARACTERIZATIONS; VARIABLE EXPONENT MORREY; HARDY-SPACES; SCHRODINGER-OPERATORS; POISSON INTEGRALS; LEBESGUE SPACES; UPPER-BOUNDS; FRACTIONAL INTEGRALS; HEAT KERNEL; BMO;
D O I
10.1007/s13324-023-00834-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A well-known result of Stein-Weiss in 1971 said that a harmonic function, defined on the upper half-space, is the Poisson integral of a Lebesgue function if and only if it is also a Lebesgue function uniformly in the time variable. Under a metric measure space setting, we show that a solution to the elliptic equation with a non-negative potential, defined on the upper half-space, is in the essentially-bounded-Morrey space with variable exponent if and only if it can be represented as the Poisson integral of a variable Morrey function, where the doubling property, the pointwise upper bound on the heat kernel, the mean value property and the Liouville property are assumed.
引用
收藏
页数:31
相关论文
共 50 条