A new linearized maximum principle preserving and energy stability scheme for the space fractional Allen-Cahn equation
被引:2
|
作者:
Zhang, Biao
论文数: 0引用数: 0
h-index: 0
机构:
Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Key Lab Intelligent Comp & Informat Proc,Minist E, Xiangtan 411105, Hunan, Peoples R ChinaXiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Key Lab Intelligent Comp & Informat Proc,Minist E, Xiangtan 411105, Hunan, Peoples R China
Zhang, Biao
[1
]
Yang, Yin
论文数: 0引用数: 0
h-index: 0
机构:
Xiangtan Univ, Natl Ctr Appl Math Hunan, Sch Math & Computat Sci, Hunan Int Sci & Technol Innovat Cooperat Base Com, Xiangtan 411105, Hunan, Peoples R ChinaXiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Key Lab Intelligent Comp & Informat Proc,Minist E, Xiangtan 411105, Hunan, Peoples R China
Yang, Yin
[2
]
机构:
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Key Lab Intelligent Comp & Informat Proc,Minist E, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Natl Ctr Appl Math Hunan, Sch Math & Computat Sci, Hunan Int Sci & Technol Innovat Cooperat Base Com, Xiangtan 411105, Hunan, Peoples R China
Space fractional Allen-Cahn equation;
New linearized two-level scheme;
Newton linearized technology;
Discrete maximum principle;
Energy stability;
Error analysis;
SPECTRAL-COLLOCATION METHOD;
NUMERICAL-ANALYSIS;
MOTION;
APPROXIMATIONS;
HILLIARD;
D O I:
10.1007/s11075-022-01411-x
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, a numerical method is proposed to solve the space fractional Allen-Cahn equation. Based on Crank-Nicolson method for time discretization and second-order weighted and shifted Grunwald difference formula for spatial discretization, we present a new linearized two-level scheme, where the nonlinear term is handled by Newton linearized technology. And we only need to solve a linear system at each time level. Then, the unique solvability of the numerical scheme is given. Under the appropriate assumptions of time step, the discrete maximum principle and energy stability of the numerical scheme are proved. Furthermore, we give a detailed error analysis, which reflects that the temporal and spatial convergence orders are both second order. At last, some numerical experiments show that the proposed method is reasonable and effective.
机构:
Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
Minist Educ, Key Lab Intelligent Comp & Informat Proc, Xiangtan 411105, Hunan, Peoples R ChinaXiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
Zhang, Biao
Yang, Yin
论文数: 0引用数: 0
h-index: 0
机构:
Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
Natl Ctr Appl Math Hunan, Hunan Int Sci & Technol Innovat Cooperat Base Comp, Xiangtan 411105, Hunan, Peoples R ChinaXiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
机构:
Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Peoples R ChinaHenan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Peoples R China
Xu, Zhuangzhi
Fu, Yayun
论文数: 0引用数: 0
h-index: 0
机构:
Xuchang Univ, Sch Sci, Henan Joint Int Res Lab High Performance Computat, Xuchang 461000, Peoples R ChinaHenan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Peoples R China
机构:
Purdue Univ, Dept Math, W Lafayette, IN 47907 USAPurdue Univ, Dept Math, W Lafayette, IN 47907 USA
Shen, Jie
Tang, Tao
论文数: 0引用数: 0
h-index: 0
机构:
South Univ Sci & Technol, Dept Math, Shenzhen 518055, Guangdong, Peoples R China
Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
Hong Kong Baptist Univ, Inst Computat & Theoret Studies, Kowloon Tong, Hong Kong, Peoples R ChinaPurdue Univ, Dept Math, W Lafayette, IN 47907 USA
Tang, Tao
Yang, Jiang
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USAPurdue Univ, Dept Math, W Lafayette, IN 47907 USA