Meta-analysis and open-source database for in vivo brain Magnetic Resonance spectroscopy in health and disease

被引:4
|
作者
Gudmundson, Aaron T. [1 ,2 ]
Koo, Annie [3 ]
Virovka, Anna [3 ]
Amirault, Alyssa L. [3 ]
Soo, Madelene [3 ]
Cho, Jocelyn H. [3 ]
Oeltzschner, Georg [1 ,2 ]
Edden, Richard A. E. [1 ,2 ]
Stark, Craig E. L. [3 ,4 ]
机构
[1] Johns Hopkins Univ, Russell H Morgan Dept Radiol & Radiol Sci, Sch Med, Baltimore, MD USA
[2] Kennedy Krieger Inst, FM Kirby Res Ctr Funct Brain Imaging, Baltimore, MD USA
[3] Univ Calif Irvine, Dept Neurobiol & Behav, Irvine, CA USA
[4] Univ Calif Irvine, Dept Neurobiol & Behav, 1400 Biol Sci 3, Irvine, CA 92697 USA
关键词
Human brain; Database; Meta-analysis; Proton MRS; In vivo; Simulation1; N-ACETYL-ASPARTATE; T-2; RELAXATION-TIMES; MILD COGNITIVE IMPAIRMENT; PROTON MR SPECTROSCOPY; GAMMA-AMINOBUTYRIC-ACID; CREATINE PLUS PHOSPHOCREATINE; MAJOR DEPRESSIVE DISORDER; WHITE-MATTER INTEGRITY; SPIN-SPIN RELAXATION; TRANSVERSE RELAXATION;
D O I
10.1016/j.ab.2023.115227
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Proton (1H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo. Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simula-tions must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta -Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expec-tation values and ranges for metabolite concentrations and T2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] OXSA: An open-source magnetic resonance spectroscopy analysis toolbox in MATLAB
    Purvis, Lucian A. B.
    Clarke, William T.
    Biasiolli, Luca
    Valkovic, Ladislav
    Robson, Matthew D.
    Rodgers, Christopher T.
    PLOS ONE, 2017, 12 (09):
  • [2] MetaWin 3: open-source software for meta-analysis
    Rosenberg, Michael S.
    FRONTIERS IN BIOINFORMATICS, 2024, 4
  • [3] Magnetic resonance spectroscopy abnormalities in traumatic brain injury: A meta-analysis
    Brown, Matthew
    Baradaran, Hediyeh
    Christos, Paul J.
    Wright, Drew
    Gupta, Ajay
    Tsiouris, Apostolos J.
    JOURNAL OF NEURORADIOLOGY, 2018, 45 (02) : 123 - 129
  • [4] Osprey: Open-source processing, reconstruction & estimation of magnetic resonance spectroscopy data
    Oeltzschner, Georg
    Zollner, Helge J.
    Hui, Steve C. N.
    Mikkelsen, Mark
    Saleh, Muhammad G.
    Tapper, Sofie
    Edden, Richard A. E.
    JOURNAL OF NEUROSCIENCE METHODS, 2020, 343
  • [5] On the open-source landscape of Magnetic Resonance in Medicine
    Boudreau, Mathieu
    Stikov, Nikola
    Jezzard, Peter
    MAGNETIC RESONANCE IN MEDICINE, 2022, 88 (04) : 1495 - 1497
  • [6] PyAMARES, an Open-Source Python']Python Library for Fitting Magnetic Resonance Spectroscopy Data
    Xu, Jia
    Vaeggemose, Michael
    Schulte, Rolf F.
    Yang, Baolian
    Lee, Chu-Yu
    Laustsen, Christoffer
    Magnotta, Vincent A.
    DIAGNOSTICS, 2024, 14 (23)
  • [7] Magnetic Resonance Spectroscopy in Alzheimer's Disease: Systematic Review and Meta-Analysis
    Wang, Hui
    Tan, Lan
    Wang, Hui-Fu
    Liu, Ying
    Yin, Rui-Hua
    Wang, Wen-Ying
    Chang, Xiao-Long
    Jiang, Teng
    Yu, Jin-Tai
    JOURNAL OF ALZHEIMERS DISEASE, 2015, 46 (04) : 1049 - 1070
  • [8] Open-Source Biomedical Image Analysis Models: A Meta-Analysis and Continuous Survey
    Li, Rui
    Sharma, Vaibhav
    Thangamani, Subasini
    Yakimovich, Artur
    FRONTIERS IN BIOINFORMATICS, 2022, 2
  • [9] MAGE: An Open-Source Tool for Meta-Analysis of Gene Expression Studies
    Tamposis, Ioannis A.
    Manios, Georgios A.
    Charitou, Theodosia
    Vennou, Konstantina E.
    Kontou, Panagiota, I
    Bagos, Pantelis G.
    BIOLOGY-BASEL, 2022, 11 (06):
  • [10] In Vivo 13C Magnetic Resonance Spectroscopy for Assessing Brain Biochemistry in Health and Disease
    Pravat K. Mandal
    Rimil Guha Roy
    Avantika Samkaria
    Joseph C. Maroon
    Yashika Arora
    Neurochemical Research, 2022, 47 : 1183 - 1201