Pore evolution mechanisms during directed energy deposition additive manufacturing

被引:32
|
作者
Zhang, Kai [1 ,2 ]
Chen, Yunhui [1 ,2 ,3 ,4 ]
Marussi, Sebastian [1 ,2 ]
Fan, Xianqiang [1 ,2 ]
Fitzpatrick, Maureen [1 ,3 ]
Bhagavath, Shishira [1 ,2 ]
Majkut, Marta [3 ]
Lukic, Bratislav [3 ]
Jakata, Kudakwashe [3 ,5 ]
Rack, Alexander [3 ]
Jones, Martyn A. [6 ]
Shinjo, Junji [7 ]
Panwisawas, Chinnapat [8 ]
Leung, Chu Lun Alex [1 ,2 ]
Lee, Peter D. [1 ,2 ]
机构
[1] UCL, Dept Mech Engn, London WC1E 7JE, England
[2] Res Complex Harwell,Harwell Campus, Didcot OX11 0FA, England
[3] ESRF European Synchrotron, F-38000 Grenoble, France
[4] RMIT Univ, Sch Engn, Melbourne, Vic 3000, Australia
[5] Diamond Light Source, Harwell Campus, Didcot OX11 0DE, Oxon, England
[6] Rolls Royce PLC, POB 31, Derby DE24 8BJ, England
[7] Shimane Univ, Next Generat Tatara Cocreat Ctr, Matsue 6908504, Japan
[8] Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, England
基金
英国工程与自然科学研究理事会;
关键词
ALUMINUM-COPPER ALLOYS; HYDROGEN POROSITY; LASER; MICROSTRUCTURE; SOLIDIFICATION; SIMULATION; GENERATION; MORPHOLOGY; DYNAMICS; BEHAVIOR;
D O I
10.1038/s41467-024-45913-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Porosity in directed energy deposition (DED) deteriorates mechanical performances of components, limiting safety-critical applications. However, how pores arise and evolve in DED remains unclear. Here, we reveal pore evolution mechanisms during DED using in situ X-ray imaging and multi-physics modelling. We quantify five mechanisms contributing to pore formation, migration, pushing, growth, removal and entrapment: (i) bubbles from gas atomised powder enter the melt pool, and then migrate circularly or laterally; (ii) small bubbles can escape from the pool surface, or coalesce into larger bubbles, or be entrapped by solidification fronts; (iii) larger coalesced bubbles can remain in the pool for long periods, pushed by the solid/liquid interface; (iv) Marangoni surface shear flow overcomes buoyancy, keeping larger bubbles from popping out; and (v) once large bubbles reach critical sizes they escape from the pool surface or are trapped in DED tracks. These mechanisms can guide the development of pore minimisation strategies. Porosity is a key issue in additive manufacturing (AM). Here, the authors reveal the bubble evolution mechanisms including formation, coalescence, pushing, growth, entrainment, escape, and entrapment during directed energy deposition AM using in situ X-ray imaging and multiphysics modelling.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Pore evolution mechanisms during directed energy deposition additive manufacturing
    Kai Zhang
    Yunhui Chen
    Sebastian Marussi
    Xianqiang Fan
    Maureen Fitzpatrick
    Shishira Bhagavath
    Marta Majkut
    Bratislav Lukic
    Kudakwashe Jakata
    Alexander Rack
    Martyn A. Jones
    Junji Shinjo
    Chinnapat Panwisawas
    Chu Lun Alex Leung
    Peter D. Lee
    Nature Communications, 15
  • [2] Predicting Microstructure Evolution During Directed Energy Deposition Additive Manufacturing of Ti-6Al-4V
    Baykasoglu, Cengiz
    Akyildiz, Oncu
    Candemir, Duygu
    Yang, Qingcheng
    To, Albert C.
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2018, 140 (05):
  • [3] Cracking mechanism of Hastelloy X superalloy during directed energy deposition additive manufacturing
    Guo, Bojing
    Zhang, Yashan
    Yang, Zhongsheng
    Cui, Dingcong
    He, Feng
    Li, Junjie
    Wang, Zhijun
    Lin, Xin
    Wang, Jincheng
    ADDITIVE MANUFACTURING, 2022, 55
  • [4] Residual Strains In Directed Energy Deposition Additive Manufacturing.
    Weisz-Patrault, Daniel
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [5] In situ X-ray imaging of pore formation mechanisms and dynamics in laser powder-blown directed energy deposition additive manufacturing
    Wolff, Sarah J.
    Wang, Hui
    Gould, Benjamin
    Parab, Niranjan
    Wu, Ziheng
    Zhao, Cang
    Greco, Aaron
    Sun, Tao
    INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2021, 166
  • [6] Directed energy deposition: Applications and outlook METAL DIRECTED ENERGY DEPOSITION (DED) ADDITIVE MANUFACTURING IS TRANSITIONING INTO PRODUCTION
    Nassar, Abdalla R.
    LASER FOCUS WORLD, 2021, 57 (10): : 23 - 26
  • [7] Investigating build geometry characteristics during laser directed energy deposition based additive manufacturing
    Paul, A. C.
    Jinoop, A. N.
    Paul, C. P.
    Deogiri, P.
    Bindra, K. S.
    JOURNAL OF LASER APPLICATIONS, 2020, 32 (04)
  • [8] Melt pool morphology in directed energy deposition additive manufacturing process
    Chen, Y.
    Clark, S.
    Leung, A. C. L.
    Sinclair, L.
    Marussi, S.
    Atwood, R.
    Connoley, T.
    Jones, M.
    Baxter, G.
    Lee, P. D.
    INTERNATIONAL CONFERENCE ON MODELLING OF CASTING, WELDING AND ADVANCED SOLIDIFICATION PROCESSES (MCWASP XV), 2020, 861
  • [9] Modeling layer geometry in directed energy deposition with laser for additive manufacturing
    dos Santos Paes, Luiz Eduardo
    Ferreira, Henrique Santos
    Pereira, Milton
    Xavier, Fabio Antonio
    Weingaertner, Walter Lindolfo
    Vilarinho, Louriel Oliveira
    SURFACE & COATINGS TECHNOLOGY, 2021, 409
  • [10] Application of Directed Energy Deposition-Based Additive Manufacturing in Repair
    Saboori, Abdollah
    Aversa, Alberta
    Marchese, Giulio
    Biamino, Sara
    Lombardi, Mariangela
    Fino, Paolo
    APPLIED SCIENCES-BASEL, 2019, 9 (16):