Investigations on Self-supervised Learning for Script-, Font-type, and Location Classification on Historical Documents

被引:2
|
作者
Zenk, Johan [1 ]
Kordon, Florian [1 ]
Mayr, Martin [1 ]
Seuret, Mathias [1 ]
Christlein, Vincent [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Erlangen, Bavaria, Germany
来源
PROCEEDINGS OF THE 2023 INTERNATIONAL WORKSHOP ON HISTORICAL DOCUMENT IMAGING AND PROCESSING, HIP 2023 | 2023年
关键词
self-supervised learning; document analysis; classification;
D O I
10.1145/3604951.3605519
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the context of automated classification of historical documents, we investigate three contemporary self-supervised learning (SSL) techniques (SimSiam, Dino, and VICReg) for the pre-training of three different document analysis tasks, namely script-type, font-type, and location classification. Our study draws samples from multiple datasets that contain images of manuscripts, prints, charters, and letters. The representations derived via pre-text training are taken as inputs for k-NN classification and a parametric linear classifier. The latter is placed atop the pre-trained backbones to enable fine-tuning of the entire network to further improve the classification by exploiting task-specific label data. The network's final performance is assessed via independent test sets obtained from the ICDAR2021 Competition on Historical Document Classification. We empirically show that representations learned with SSL are significantly better suited for subsequent document classification than features generated by commonly used transfer learning on ImageNet.
引用
收藏
页码:97 / 102
页数:6
相关论文
共 50 条
  • [1] Self-supervised human mobility learning for next location prediction and trajectory classification
    Zhou, Fan
    Dai, Yurou
    Gao, Qiang
    Wang, Pengyu
    Zhong, Ting
    KNOWLEDGE-BASED SYSTEMS, 2021, 228
  • [2] Self-supervised learning for Environmental Sound Classification
    Tripathi, Achyut Mani
    Mishra, Aakansha
    APPLIED ACOUSTICS, 2021, 182
  • [3] Contrastive Self-supervised Learning for Graph Classification
    Zeng, Jiaqi
    Xie, Pengtao
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10824 - 10832
  • [4] An improved self-supervised learning for EEG classification
    Ou, Yanghan
    Sun, Siqin
    Gan, Haitao
    Zhou, Ran
    Yang, Zhi
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (07) : 6907 - 6922
  • [5] Self-supervised Learning for Reading Activity Classification
    Islam, Md Rabiul
    Sakamoto, Shuji
    Yamada, Yoshihiro
    Vargo, Andrew W.
    Iwata, Motoi
    Iwamura, Masakazu
    Kise, Koichi
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2021, 5 (03):
  • [6] Self-supervised Learning for Sonar Image Classification
    Preciado-Grijalva, Alan
    Wehbe, Bilal
    Firvida, Miguel Bande
    Valdenegro-Toro, Matias
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 1498 - 1507
  • [7] Self-supervised Learning for Astronomical Image Classification
    Martinazzo, Ana
    Espadoto, Mateus
    Hirata, Nina S. T.
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 4176 - 4182
  • [8] Respiratory sound classification using supervised and self-supervised learning
    Lee, Sunju
    Ha, Taeyoung
    Hyon, YunKyong
    Chung, Chaeuk
    Kim, Yoonjoo
    Woo, Seong-Dae
    Lee, Song-I
    RESPIROLOGY, 2023, 28 : 160 - 161
  • [9] Multi-Task Self-Supervised Learning for Script Event Prediction
    Zhou, Bo
    Chen, Yubo
    Liu, Kang
    Zhao, Jun
    Xu, Jiexin
    Jiang, Xiaojian
    Li, Jinlong
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3662 - 3666
  • [10] Deep self-supervised transformation learning for leukocyte classification
    Chen, Xinwei
    Zheng, Guolin
    Zhou, Liwei
    Li, Zuoyong
    Fan, Haoyi
    JOURNAL OF BIOPHOTONICS, 2023, 16 (03)