Novel machine learning and differentiable programming techniques applied to the VIP-2 underground experiment

被引:0
|
作者
Napolitano, Fabrizio [1 ]
Bazzi, Massimiliano [1 ]
Bragadireanu, Mario [1 ,2 ]
Cargnelli, Michael [3 ]
Clozza, Alberto [1 ]
De Paolis, Luca [1 ]
Del Grande, Raffaele [1 ,4 ]
Fiorini, Carlo [5 ,6 ]
Guaraldo, Carlo [1 ]
Iliescu, Mihail [1 ]
Laubenstein, Matthias [7 ]
Manti, Simone [1 ]
Marton, Johann [3 ]
Miliucci, Marco [1 ,9 ]
Piscicchia, Kristian [1 ,8 ]
Porcelli, Alessio [1 ,8 ]
Scordo, Alessandro [1 ]
Sgaramella, Francesco [1 ]
Sirghi, Diana Laura [1 ,2 ,7 ]
Sirghi, Florin [1 ,2 ]
Doce, Oton Vazquez [1 ]
Zmeskal, Johann [1 ,3 ]
Curceanu, Catalina [1 ,2 ]
机构
[1] INFN, Lab Nazl Frascati, Via E Fermi 54, I-00044 Frascati, Rome, Italy
[2] IFIN HH, Inst Natl Pentru Fiz Inginerie Nucl Horia Hulubei, Str Atomistilor 407, Bucharest, Romania
[3] Stefan Meyer Inst Subatom Phys, Austrian Acad Sci, Kegelgasse 27, A-1030 Vienna, Austria
[4] Tech Univ Munich, Phys Dept E62, James Franck Str 1, D-85748 Garching, Germany
[5] Dipartimento Elettron Informaz & Bioingn, Politecn Milano, I-20133 Milan, Italy
[6] INFN Sez Milano, I-20133 Milan, Italy
[7] INFN, Lab Nazl Gran Sasso, Via G Acitelli 22, I-67100 Assergi, Laquila, Italy
[8] Ctr Ric Enr Fermi, Museo Stor Fis Ctr Studi & Ric Enr Fermi, Via Panisperna 89a, I-00184 Rome, Roma, Italy
[9] Italian Space Agcy, Via Politecn,S n c, I-00133 Rome, Roma, Italy
基金
奥地利科学基金会; 欧盟地平线“2020”;
关键词
VIP-2; SDD; silicon drift detector; differentiable programming; SILICON DRIFT DETECTORS; SPECTRUM;
D O I
10.1088/1361-6501/ad080a
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we present novel machine learning and differentiable programming enhanced calibration techniques used to improve the energy resolution of the Silicon Drift Detectors (SDDs) of the VIP-2 underground experiment at the Gran Sasso National Laboratory. We achieve for the first time a full width at half maximum in VIP-2 below 180 eV at 8 keV, improving around 10 eV on the previous state-of-the-art. SDDs energy resolution is a key parameter in the VIP-2 experiment, which is dedicated to searches for physics beyond the standard quantum theory, targeting Pauli exclusion principle violating atomic transitions. Additionally, we show that this method can correct for potential miscalibrations, requiring less fine-tuning with respect to standard methods.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Test of the Pauli Exclusion Principle in the VIP-2 Underground Experiment
    Curceanu, Catalina
    Shi, Hexi
    Bartalucci, Sergio
    Bertolucci, Sergio
    Bazzi, Massimiliano
    Berucci, Carolina
    Bragadireanu, Mario
    Cargnelli, Michael
    Clozza, Alberto
    De Paolis, Luca
    Di Matteo, Sergio
    Egger, Jean-Pierre
    Guaraldo, Carlo
    Iliescu, Mihail
    Marton, Johann
    Laubenstein, Matthias
    Milotti, Edoardo
    Miliucci, Marco
    Pichler, Andreas
    Pietreanu, Dorel
    Piscicchia, Kristian
    Scordo, Alessandro
    Sirghi, Diana Laura
    Sirghi, Florin
    Sperandio, Laura
    Doce, Oton Vazquez
    Widmann, Eberhard
    Zmeskal, Johann
    [J]. ENTROPY, 2017, 19 (07):
  • [2] Testing Pauli Exclusion Principle for electrons at the LNGS underground laboratory: the VIP-2 experiment
    De Paolis, Luca
    Napolitano, Fabrizio
    Piscicchia, Kristian
    Bartalucci, Sergio
    Bertolucci, Sergio
    Bazzi, Massimiliano
    Bragadireanu, Mario
    Cargnelli, Michael
    Clozza, Alberto
    Del Grande, Raffaele
    Fiorini, Carlo
    Guaraldo, Carlo
    Iliescu, Mihai
    Laubenstein, Matthias
    Marton, Johann
    Miliucci, Marco
    Milotti, Edoardo
    Porcelli, Alessio
    Scordo, Alessandro
    Sgaramella, Francesco
    Shi, Hexi
    Sirghi, Diana Laura
    Sirghi, Florin
    Zmeskal, Johann
    Curceanu, Catalina
    [J]. PARTICLES AND NUCLEI INTERNATIONAL CONFERENCE 2021, PANIC2021, 2021,
  • [3] Testing the Pauli Exclusion Principle with the VIP-2 Experiment
    Napolitano, Fabrizio
    Bartalucci, Sergio
    Bertolucci, Sergio
    Bazzi, Massimiliano
    Bragadireanu, Mario
    Capoccia, Cesidio
    Cargnelli, Michael
    Clozza, Alberto
    De Paolis, Luca
    Del Grande, Raffaele
    Fiorini, Carlo
    Guaraldo, Carlo
    Iliescu, Mihail
    Laubenstein, Matthias
    Marton, Johann
    Miliucci, Marco
    Milotti, Edoardo
    Nola, Federico
    Piscicchia, Kristian
    Porcelli, Alessio
    Scordo, Alessandro
    Sgaramella, Francesco
    Shi, Hexi
    Sirghi, Diana Laura
    Sirghi, Florin
    Doce, Oton Vazquez
    Zmeskal, Johann
    Curceanu, Catalina
    [J]. SYMMETRY-BASEL, 2022, 14 (05):
  • [4] VIP-2 at LNGS: An experiment on the validity of the Pauli Exclusion Principle for electrons
    Marton, J.
    Bartalucci, S.
    Bassi, A.
    Bazzi, M.
    Bertolucci, S.
    Berucci, C.
    Bragadireanu, M.
    Cargnelli, M.
    Clozza, A.
    Curceanu, C.
    De Paolis, L.
    Di Matteo, S.
    Donadi, S.
    Egger, J. -P.
    Guaraldo, C.
    Iliescu, M.
    Laubenstein, M.
    Milotti, E.
    Pichler, A.
    Pietreanu, D.
    Piscicchia, K.
    Scordo, A.
    Shit, H.
    Sirghi, D.
    Sirghi, F.
    Sperandio, L.
    Vazquez-Doce, O.
    Widmann, E.
    Zmeskal, J.
    [J]. FIFTH SYMPOSIUM ON PROSPECTS IN THE PHYSICS OF DISCRETE SYMMETRIES, 2017, 873
  • [5] First Experimental Survey of a Whole Class of Non-Commutative Quantum Gravity Models in the VIP-2 Lead Underground Experiment
    Piscicchia, Kristian
    Marciano, Antonino
    Addazi, Andrea
    Sirghi, Diana Laura
    Bazzi, Massimiliano
    Bortolotti, Nicola
    Bragadireanu, Mario
    Cargnelli, Michael
    Clozza, Alberto
    De Paolis, Luca
    Del Grande, Raffaele
    Guaraldo, Carlo
    Iliescu, Mihail
    Laubenstein, Matthias
    Manti, Simone
    Marton, Johann
    Miliucci, Marco
    Napolitano, Fabrizio
    Nola, Federico
    Porcelli, Alessio
    Scordo, Alessandro
    Sgaramella, Francesco
    Sirghi, Florin
    Doce, Oton Vazquez
    Zmeskal, Johann
    Curceanu, Catalina
    [J]. UNIVERSE, 2023, 9 (07)
  • [6] Physics-informed machine learning with differentiable programming for heterogeneous underground reservoir pressure management
    Pachalieva, Aleksandra
    O'Malley, Daniel
    Harp, Dylan Robert
    Viswanathan, Hari
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [7] Physics-informed machine learning with differentiable programming for heterogeneous underground reservoir pressure management
    Aleksandra Pachalieva
    Daniel O’Malley
    Dylan Robert Harp
    Hari Viswanathan
    [J]. Scientific Reports, 12
  • [8] Machine Learning Primer: Exploring Differentiable Programming
    Sakai T.
    [J]. Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2023, 89 (09): : 695 - 699
  • [9] Learned multiphysics inversion with differentiable programming and machine learning
    Louboutin M.
    Yin Z.
    Orozco R.
    Grady T.J.
    Siahkoohi A.
    Rizzuti G.
    Witte P.A.
    Møyner O.
    Gorman G.J.
    Herrmann F.J.
    [J]. Leading Edge, 2023, 42 (07): : 474 - 486
  • [10] Semi-Analytical Monte Carlo Method to Simulate the Signal of the VIP-2 Experiment
    Milotti, Edoardo
    Bartalucci, Sergio
    Bertolucci, Sergio
    Bazzi, Massimiliano
    Bragadireanu, Mario
    Cargnelli, Michael
    Clozza, Alberto
    Curceanu, Catalina
    De Paolis, Luca
    Del Grande, Raffaele
    Guaraldo, Carlo
    Iliescu, Mihail
    Laubenstein, Matthias
    Marton, Johann
    Miliucci, Marco
    Napolitano, Fabrizio
    Piscicchia, Kristian
    Scordo, Alessandro
    Shi, Hexi
    Sirghi, Diana Laura
    Sirghi, Florin
    Sperandio, Laura
    Doce, Oton Vazquez
    Zmeskal, Johann
    [J]. SYMMETRY-BASEL, 2021, 13 (01): : 1 - 14