The Isomorphism Problem of Normalized Unit Groups of Group Algebras of a Class of Finite 2-groups

被引:0
|
作者
Wang, Yu Lei [1 ]
Liu, He Guo [2 ]
机构
[1] Henan Univ Technol, Dept Math, Zhengzhou 450001, Peoples R China
[2] Hainan Univ, Dept Math, Haikou 570228, Peoples R China
基金
中国国家自然科学基金;
关键词
isomorphism problem; normalized unit; Frattini subgroup; finite; 2-group; MODULAR GROUP-ALGEBRAS;
D O I
10.1007/s10114-023-2261-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p be a prime and F-p be a finite field of p elements. Let F(p)G denote the group algebra of the finite p-group G over the field F-p and V (F(p)G) denote the group of normalized units in F(p)G. Suppose that G and H are finite p-groups given by a central extension of the form 1 -> Z(pm) -> G -> Z(p) x ... x Z(p) -> 1 and G' congruent to Z(p), m >= 1. Then V (F(p)G) congruent to V (FpH) if and only if G congruent to H. Balogh and Bovdi only solved the isomorphism problem when p is odd. In this paper, the case p = 2 is determined.
引用
下载
收藏
页码:2275 / 2282
页数:8
相关论文
共 50 条