Properties of symbolic powers of edge ideals of weighted oriented graphs

被引:0
|
作者
Mandal, Mousumi [1 ]
Pradhan, Dipak Kumar [1 ]
机构
[1] Indian Inst Technol Kharagpur, Dept Math, Kharagpur 721302, India
关键词
Weighted oriented graph; induced digraph; edge ideal; symbolic power; tree; path;
D O I
10.1142/S0218196723500406
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a weighted oriented graph and I(D) be its edge ideal. We provide one method to find all the minimal generators of I-subset of C, where C is a maximal strong vertex cover of D and I-subset of C is the intersections of irreducible ideals associated to the strong vertex covers contained in C. If D' is an induced digraph of D, under a certain condition on the strong vertex covers of D' and D, we show that I(D')((s)) not equal I(D')(s) for some s >= 2 implies I(D)((s)) not equal I(D)(s). We provide the necessary and sufficient condition for the equality of ordinary and symbolic powers of edge ideal of the union of two naturally oriented paths with a common sink vertex. We characterize all the maximal strong vertex covers of D such that at most one edge is oriented into each of its vertices and w(x) >= 2 if deg(D)(x) >= 2 for all x is an element of V (D). Finally, if D is a weighted rooted tree with the degree of root is 1 and w(x) >= 2 when deg(D)(x) = 2 for all x is an element of V (D), we show that I(D)((s)) = I(D)(s) for all s >= 2.
引用
收藏
页码:927 / 951
页数:25
相关论文
共 50 条
  • [1] Comparing symbolic powers of edge ideals of weighted oriented graphs
    Mandal, Mousumi
    Pradhan, Dipak Kumar
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 56 (02) : 453 - 474
  • [2] Comparing symbolic powers of edge ideals of weighted oriented graphs
    Mousumi Mandal
    Dipak Kumar Pradhan
    Journal of Algebraic Combinatorics, 2022, 56 : 453 - 474
  • [3] Equality of ordinary and symbolic powers of edge ideals of weighted oriented graphs
    Banerjee, Arindam
    Chakraborty, Bidwan
    Das, Kanoy Kumar
    Mandal, Mousumi
    Selvaraja, S.
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (04) : 1575 - 1580
  • [4] Symbolic powers of edge ideals of graphs
    Gu, Yan
    Ha, Huy Tai
    O'Rourke, Jonathan L.
    Skelton, Joseph W.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (09) : 3743 - 3760
  • [5] Powers of edge ideals of weighted oriented graphs with linear resolutions
    Banerjee, Arindam
    Das, Kanoy Kumar
    Selvaraja, S.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (07)
  • [6] Integral Closure of Powers of Edge Ideals of Weighted Oriented Graphs
    Banerjee, Arindam
    Das, Kanoy Kumar
    Haque, Sirajul
    ACTA MATHEMATICA VIETNAMICA, 2024, : 33 - 49
  • [7] Symbolic powers in weighted oriented graphs
    Mandal, Mousumi
    Pradhan, Dipak Kumar
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2021, 31 (03) : 533 - 549
  • [8] ON THE DEPTH OF SYMBOLIC POWERS OF EDGE IDEALS OF GRAPHS
    Fakhari, S. A. S.
    NAGOYA MATHEMATICAL JOURNAL, 2022, 245 : 28 - 40
  • [9] Regularity of symbolic powers of edge ideals of unicyclic graphs
    Fakhari, S. A. Seyed
    JOURNAL OF ALGEBRA, 2020, 541 : 345 - 358
  • [10] SPLITTINGS FOR SYMBOLIC POWERS OF EDGE IDEALS OF COMPLETE GRAPHS
    Cooper, Susan M.
    Da Silva, Sergio
    Gutkin, Max
    Reimer, Tessa
    JOURNAL OF COMMUTATIVE ALGEBRA, 2024, 16 (02) : 183 - 196