LORENTZIAN PARA-SASAKIAN MANIFOLDS AND *-RICCI SOLITONS

被引:3
|
作者
Haseeb, Abdul [1 ]
Chaubey, Sudhakar k. [2 ]
机构
[1] Jazan Univ, Fac Sci, Dept Math, Jazan 2097, Saudi Arabia
[2] Univ Technol & Appl Sci, Dept Math, Shinas, Oman
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2024年 / 48卷 / 02期
关键词
Lorentzian para-Sasakian manifolds; *-Ricci solitons; gradient *-Ricci solitons; generalized eta-Einstein manifolds;
D O I
10.46793/KgJMat2402.167H
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the properties of Lorentzian para-Sasakian manifolds endowed with *-Ricci solitons and gradient *-Ricci solitons. Finally, the existence of *-Ricci soliton on a 4 -dimensional Lorentzian para-Sasakian manifold is proved by constructing a non -trivial example.
引用
收藏
页码:167 / 179
页数:13
相关论文
共 50 条
  • [1] η-Ricci Solitons on Lorentzian Para-Sasakian Manifolds
    Blaga, Adara M.
    FILOMAT, 2016, 30 (02) : 489 - 496
  • [2] η-Ricci solitons and almost η-Ricci solitons on para-Sasakian manifolds
    Naik, Devaraja Mallesha
    Venkatesha, V.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (09)
  • [3] SOME TYPES OF eta-RICCI SOLITONS ON LORENTZIAN PARA-SASAKIAN MANIFOLDS
    Singh, Abhishek
    Kishor, Shyam
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2018, 33 (02): : 217 - 230
  • [4] YAMABE AND RIEMANN SOLITONS ON LORENTZIAN PARA-SASAKIAN MANIFOLDS
    Chidananda, Shruthi
    Venkatesha, Venkatesha
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 37 (01): : 213 - 228
  • [5] On (ε) - Lorentzian para-Sasakian Manifolds
    Prakasha, D. G.
    Prakash, A.
    Nagaraja, M.
    Veeresha, P.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2022, 17 (02): : 243 - 252
  • [6] On Lorentzian para-Sasakian manifolds
    Al-Aqeel, A
    De, UC
    Ghosh, GC
    KUWAIT JOURNAL OF SCIENCE & ENGINEERING, 2004, 31 (02): : 1 - 13
  • [7] On Lorentzian para-Sasakian manifolds
    Mishra, IK
    Ojha, RH
    GEOMETRY ANALYSIS AND APPLICATIONS, 2001, : 139 - 143
  • [8] HYPERSURFACES OF LORENTZIAN PARA-SASAKIAN MANIFOLDS
    Perktas, Selcen Yuksel
    Kilic, Erol
    Keles, Sadik
    MATHEMATICA SCANDINAVICA, 2011, 109 (01) : 5 - 21
  • [9] ON A TYPE OF LORENTZIAN PARA-SASAKIAN MANIFOLDS
    Yildiz, Ahmet
    De, Uday Chand
    Ata, Erhan
    MATHEMATICAL REPORTS, 2014, 16 (01): : 61 - 67
  • [10] ON (is an element of)-LORENTZIAN PARA-SASAKIAN MANIFOLDS
    Prasad, Rajendra
    Srivastava, Vibha
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 27 (02): : 297 - 306