K-theoretic Classification of Inductive Limit Actions of Fusion Categories on AF-algebras

被引:3
|
作者
Chen, Quan [1 ]
Palomares, Roberto Hernandez [2 ]
Jones, Corey [3 ]
机构
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[2] Univ Waterloo, Pure Math, Waterloo, ON, Canada
[3] North Carolina State Univ, Dept Math, Raleigh, NC USA
关键词
OPERATOR-ALGEBRAS; SUBFACTORS; INDEX; REALIZATIONS; EQUIVALENCE; BIMODULES;
D O I
10.1007/s00220-024-04969-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a K-theoretic invariant for actions of unitary fusion categories on unital C*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textrm{C}}<^>*$$\end{document}-algebras. We show that for inductive limits of finite dimensional actions of fusion categories on AF-algebras, this is a complete invariant. In particular, this gives a complete invariant for inductive limit actions of finite groups on unital AF-algebras. We apply our results to obtain a classification of finite depth, strongly AF-inclusions of unital AF-algebras.
引用
收藏
页数:52
相关论文
共 50 条