Lattices of t-structures and thick subcategories for discrete cluster categories

被引:2
|
作者
Gratz, Sira [1 ]
Zvonareva, Alexandra [2 ]
机构
[1] Aarhus Univ, Dept Math, Aarhus, Denmark
[2] Univ Stuttgart, Inst Algebra & Zahlentheorie, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
基金
英国工程与自然科学研究理事会;
关键词
PARTITIONS;
D O I
10.1112/jlms.12705
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify t-structures and thick subcategories in any discrete cluster category C(Z)$\mathcal {C}(\mathcal {Z})$ of Dynkin type A$A$, and show that the set of all t-structures on C(Z)$\mathcal {C}(\mathcal {Z})$ is a lattice under inclusion of aisles, with meet given by their intersection. We show that both the lattice of t-structures on C(Z)$\mathcal {C}(\mathcal {Z})$ obtained in this way and the lattice of thick subcategories of C(Z)$\mathcal {C}(\mathcal {Z})$ are intimately related to the lattice of non-crossing partitions of type A$A$. In particular, the lattice of equivalence classes of non-degenerate t-structures on such a category is isomorphic to the lattice of non-crossing partitions of a finite linearly ordered set.
引用
收藏
页码:973 / 1001
页数:29
相关论文
共 50 条