Thermodynamic mixing properties of disordered alkali feldspar solid-solution from Na-K partitioning and low-temperature calorimetry

被引:1
|
作者
Heuser, D. [1 ]
Petrishcheva, E. [1 ]
Ingegneri, F. [1 ]
Lengauer, C. L. [2 ]
Dachs, E. [4 ]
Hauzenberger, C. [3 ]
Abart, R. [1 ]
机构
[1] Univ Vienna, Dept Lithospher Res, Vienna, Austria
[2] Univ Vienna, Dept Mineral & Crystallog, Vienna, Austria
[3] Karl Franzens Univ Graz, Dept Earth Sci, Graz, Austria
[4] Univ Salzburg, Dept Chem & Phys Mat, Salzburg, Austria
基金
奥地利科学基金会;
关键词
Alkali feldspar solid-solution; Thermodynamic mixing properties; Na-K partitioning experiments; Low-temperature calorimetry; Excess Gibbs energy; MICROCLINE-LOW ALBITE; SANIDINE CRYSTALLINE SOLUTIONS; ION-EXCHANGE; HEAT-CAPACITIES; RANGE ORDER; ENTROPY; SOLVUS; ENTHALPIES; PARAMETERS; PHASES;
D O I
10.1007/s00269-024-01270-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The equilibrium partitioning of Na and K between alkali feldspar and NaCl-KCl salt melt was determined at 800 circle\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>\circ$$\end{document}C, 850 circle\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>\circ$$\end{document}C, 900 circle\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>\circ$$\end{document}C, 950 circle\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>\circ$$\end{document}C and 1000 circle\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>\circ$$\end{document}C and close to ambient pressure. Four different natural gem-quality alkali feldspars with low degree of Al-Si ordering covering the range from orthoclase to high sanidine and with slightly different minor element concentrations were used as starting materials. The partitioning curves obtained for the four feldspars are indistinguishable indicating that Na-K partitioning independent of the differences of Al-Si ordering state and minor element concentrations existing amongst these feldspars. A sub-regular two parameter Margules type solution model was fitted to the partitioning data, and the excess Gibbs energy describing the thermodynamic non-ideality of the alkali feldspar solid-solution and the respective Margules parameters WgK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\text {g}\text {K}}$$\end{document} and Wg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\text {g}\text {Na}}$$\end{document} including their temperature dependence expressed as Wg=Wh-TWs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_g=W_h-TW_s$$\end{document} were determined: WgK=19754 +/- 3140J center dot mol-1-T center dot 2.33 +/- 2.67J center dot mol-1 center dot K-1Wg=14916 +/- 4272J center dot mol-1-T center dot 3.55 +/- 3.64J center dot mol-1 center dot K-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} W_{\text {g}\text {K}}&= 19754 \pm 3140 J\cdot \,\,{\hbox {mol}}\,\,<^>{-1} - T \cdot 2.33 \pm 2. 67 J\cdot \,\,{\hbox {mol}}\,\,<^>{-1}\cdot K<^>{-1} \\ W_{\text {g}\text {Na}}&= 14916 \pm 4272 J\cdot \,\,{\hbox {mol}}\,\,<^>{-1} - T \cdot 3.55 \pm 3.64 J\cdot {\hbox {mol}}\,\,<^>{-1}\cdot K<^>{-1} \\ \end{aligned}$$\end{document}The corresponding solvus has a critical temperature slightly above 650 circle\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>\circ$$\end{document}C and is well comparable with earlier direct experimental determinations of the low-sanidine-albite solvus curve. Comparison of the vibrational excess entropy determined from low-temperature heat capacity measurements with the total excess entropy derived from the temperature dependence of the excess Gibbs energy yields a negative configurational contribution to the excess entropy pointing towards short-range Na-K ordering on the alkali site.
引用
收藏
页数:12
相关论文
共 16 条
  • [1] Thermodynamic mixing properties of disordered alkali feldspar solid-solution from Na–K partitioning and low-temperature calorimetry
    D. Heuser
    E. Petrishcheva
    F. Ingegneri
    C. L. Lengauer
    E. Dachs
    C. Hauzenberger
    R. Abart
    Physics and Chemistry of Minerals, 2024, 51
  • [2] ION-EXCHANGE EQUILIBRIA BETWEEN ALKALI FELDSPARS AND NA-K HALOGENIDE MELTS - APPLICATION TO CALCULATION OF THERMODYNAMIC PROPERTIES OF ALKALI FELDSPAR SERIES
    DELBOVE, F
    BULLETIN DE LA SOCIETE FRANCAISE MINERALOGIE ET DE CRISTALLOGRAPHIE, 1971, 94 (5-6): : 456 - &
  • [3] LOW-TEMPERATURE PROPERTIES OF HIGH-PRESSURE QUENCHED FCC AL-SI SOLID-SOLUTION
    CHEVRIER, J
    LASJAUNIAS, JC
    ZOUGMORE, F
    CAPPONI, JJ
    EUROPHYSICS LETTERS, 1989, 8 (02): : 173 - 178
  • [4] Low-Temperature Heat Capacities and Thermodynamic Properties of Aqueous Na2B4O7 Solution
    Meng Qing-Fen
    Tan Zhi-Cheng
    Dong Ya-Ping
    Feng Hai-Tao
    Li Wu
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2010, 26 (08) : 1333 - 1338
  • [5] Redetermination of the thermodynamic properties of the solid-solid transition of adamantane by adiabatic calorimetry to investigate the suitability as a reference material for low-temperature DSC-calibration
    van Ekeren, P. J.
    van Genderen, A. C. G.
    van den Berg, G. J. K.
    THERMOCHIMICA ACTA, 2006, 446 (1-2) : 33 - 35
  • [6] Volumes of K-Na mixing for low albite-microcline crystalline solutions at elevated temperature: A test of regular solution thermodynamic models
    Hovis, GL
    GraemeBarber, A
    AMERICAN MINERALOGIST, 1997, 82 (1-2) : 158 - 164
  • [7] THE MAGNETIC-SUSCEPTIBILITY OF LUTETIUM HYDROGEN SOLID-SOLUTION ALLOYS FROM 2-K TO 300-K AND A RE-EVALUATION OF THE LOW-TEMPERATURE HEAT-CAPACITY RESULTS
    STIERMAN, RJ
    GSCHNEIDNER, KA
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1984, 42 (03) : 309 - 316
  • [8] SOLID-STATE SINTERING OF (K0.5Na0.5)NbO3 SYNTHESIZED FROM AN ALKALI-CARBONATE-BASED LOW-TEMPERATURE CALCINED POWDER
    Feizpour, Mahdi
    Ebadzadeh, Touradj
    Jenko, Darja
    MATERIALI IN TEHNOLOGIJE, 2015, 49 (06): : 975 - 982
  • [9] Catalytic Characterization of Synthetic K+ and Na+ Sodalite Phases by Low Temperature Alkali Fusion of Kaolinite during the Transesterification of Spent Cooking Oil: Kinetic and Thermodynamic Properties
    Sayed, Mohamed Adel
    Ajarem, Jamaan S.
    Allam, Ahmed A.
    Abukhadra, Mostafa R.
    Luo, Jianmin
    Wang, Chuanyi
    Bellucci, Stefano
    CATALYSTS, 2023, 13 (03)
  • [10] HEAT-CAPACITY AND THERMODYNAMIC PROPERTIES OF CO3O4 FROM 5 TO 307-K - LOW-TEMPERATURE TRANSITION
    KHRIPLOVICH, LM
    KHOLOPOV, EV
    PAUKOV, IE
    JOURNAL OF CHEMICAL THERMODYNAMICS, 1982, 14 (03): : 207 - 217