Sodium carbonate/biochar-supported sodium alginate-modified nano zero-valent iron for complete adsorption and degradation of tetracycline in aqueous solution

被引:2
|
作者
Wang, Xiangyu [1 ]
Wu, Lan [1 ]
Ma, Jun [2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Environm Sci & Engn, Kunming 650500, Peoples R China
[2] Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China
关键词
Nano zero-valent iron; Sodium alginate; Biochar; Modification; Tetracycline; Degradation; REMOVAL; IMMOBILIZATION; POLLUTANTS; NZVI;
D O I
10.1007/s11356-023-31273-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The aggregation of nanoscale zero-valent iron (NZVI) is one of the biggest challenges for its application when treating contaminants in aquatic environment. We report a study on synthesis of sodium carbonate-modified biochar (BC-600) combined with sodium alginate (SA)-modified NZVI (SA/NZVI@BC-600) for the removal of tetracycline (TC). When the initial concentration of TC was 20 mg/L, 100% TC was removed by SA/NZVI@BC-600 at an initial pH of 7 under room temperature of 25 degrees C within 90 min. In addition, the reactivity of the SA/NZVI@BC-600 composites toward TC removal was not obviously declined after 4 cycles. SA/NZVI@BC-600 shows high reactivity, stability, and reusability. This excellent performance of SA/NZVI@BC-600 was related to the addition of SA and BC-600. The best performance of the SA/NZVI@BC-600 system was observed under weakly acidic and neutral conditions. Increasing the initial concentration and lowering the reaction temperature had a slight negative effect on the removal of TC by SA/NZVI@BC-600. In addition, the presence of CO32- and HCO3- had a significant negative effect on the degradation of TC. Meanwhile, center dot OH and center dot O2- played the leading role in TC degradation. This study not only reported a novel strategy of synthesizing an excellent BC modified NZVI based catalyst but also evaluated its promising application for antibiotic degradation in aqueous solution.
引用
收藏
页码:3641 / 3655
页数:15
相关论文
共 50 条
  • [1] Sodium carbonate/biochar-supported sodium alginate-modified nano zero-valent iron for complete adsorption and degradation of tetracycline in aqueous solution
    Xiangyu Wang
    Lan Wu
    Jun Ma
    Environmental Science and Pollution Research, 2024, 31 : 3641 - 3655
  • [2] Catalytic Degradation of Diatrizoate by Persulfate Activation with Peanut Shell Biochar-Supported Nano Zero-Valent Iron in Aqueous Solution
    Xu, Jian
    Zhang, Xueliang
    Sun, Cheng
    He, Huan
    Dai, Yuxuan
    Yang, Shaogui
    Lin, Yusuo
    Zhan, Xinhua
    Li, Qun
    Zhou, Yan
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2018, 15 (09)
  • [3] Simultaneous adsorption and reduction of hexavalent chromium on biochar-supported nanoscale zero-valent iron (nZVI) in aqueous solution
    Ma, Fengfeng
    Philippe, Bakunzibake
    Zhao, Baowei
    Diao, Jingru
    Li, Jian
    WATER SCIENCE AND TECHNOLOGY, 2020, 82 (07) : 1339 - 1349
  • [4] Enhanced phenanthrene removal in aqueous solution using modified biochar supported nano zero-valent iron
    Wu, Hongwei
    Feng, Qiyan
    Yang, Hong
    Lu, Ping
    Gao, Bo
    Alansari, Amir
    ENVIRONMENTAL TECHNOLOGY, 2019, 40 (23) : 3114 - 3123
  • [5] Synergistic adsorption and degradation of sulfonylurea herbicides by biochar-supported nano zero-valent iron composites in in-situ soil remediation
    Xie, Wenwen
    Peng, Cheng
    Chen, Anqi
    Wang, Haoran
    Tholley, Mabinty Sarah
    Qian, Rong
    Lu, Sinan
    Zhang, Wei
    Zhan, Xiuping
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [6] Activation of persulfate by biochar-supported sulfidized nanoscale zero-valent iron for degradation of ciprofloxacin in aqueous solution: process optimization and degradation pathway
    Wenjing Xue
    Xinyu Chen
    Hongdou Liu
    Jun Li
    Siqi Wen
    Jiaming Guo
    Xiaoyu Shi
    Yang Gao
    Rongzhong Wang
    Yiqun Xu
    Environmental Science and Pollution Research, 2024, 31 : 10950 - 10966
  • [7] Activation of persulfate by biochar-supported sulfidized nanoscale zero-valent iron for degradation of ciprofloxacin in aqueous solution: process optimization and degradation pathway
    Xue, Wenjing
    Chen, Xinyu
    Liu, Hongdou
    Li, Jun
    Wen, Siqi
    Guo, Jiaming
    Shi, Xiaoyu
    Gao, Yang
    Wang, Rongzhong
    Xu, Yiqun
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2024, 31 (07) : 10950 - 10966
  • [8] The synthesis of biochar-supported nano zero-valent iron composite and its adsorption performance in removal of malachite green
    Gizem Müjde Yıldırım
    Bahar Bayrak
    Biomass Conversion and Biorefinery, 2022, 12 : 4785 - 4797
  • [9] Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in groundwater
    Li, Zhe
    Sun, Yuqing
    Yang, Yang
    Han, Yitong
    Wang, Tongshuai
    Chen, Jiawei
    Tsang, Daniel C. W.
    JOURNAL OF HAZARDOUS MATERIALS, 2020, 383
  • [10] The synthesis of biochar-supported nano zero-valent iron composite and its adsorption performance in removal of malachite green
    Yildirim, Gizem Mujde
    Bayrak, Bahar
    BIOMASS CONVERSION AND BIOREFINERY, 2022, 12 (10) : 4785 - 4797