Synthesis, DFT calculation, molecular docking studies and biological evaluation of a novel series of Schiff base tetradentate macrocyclic ligands and their Zn(II) complexes as antimicrobial, anti-inflammatory and anticancer agents

被引:4
|
作者
Mamta, Ashu [1 ]
Chaudhary, Ashu [1 ]
机构
[1] Kurukshetra Univ, Dept Chem, Kurukshetra 136118, Haryana, India
关键词
Anticancer; Anti-inflammatory; Antimicrobial; Macrocyclic; Tetradentate; ZETA VALENCE QUALITY; GAUSSIAN-BASIS SETS; IN-VITRO; METAL-COMPLEXES; ZINC(II) COMPLEXES; COPPER-COMPLEXES; SOFTWARE NEWS; ATOMS LI; DESIGN; DNA;
D O I
10.1007/s11164-023-05094-4
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zinc-based coordination compounds, which are inexpensive, non-toxic, and abundant on earth, are attracting scientific interest as potential candidates for use as antimicrobial, anticancer, and anti-inflammatory agents. In the present work, novel Schiff base macrocyclic Zn(II) complexes [Zn(N8O4L1)Cl-2-Zn(N8O4L3)Cl-2] were synthesized by the reaction of ZnCl2 and macrocyclic ligands (N8O4L1-N8O4L3) derived from the condensation of ligand (N4L) and dicarboxylic acids [HOOC-(CH2)(n)-COOH]. The structural confirmation of the newly synthesized compounds was accomplished through various analytical techniques including elemental analysis, infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), UV-visible spectroscopy, and powder X-ray diffraction (XRD) studies. The spectral data provided evidence that the macrocyclic ligands acted as tetradentate ligands, forming coordination bonds with Zn(II) ions through the nitrogen atom of the imine (>C=N) group. The coordination complexes exhibited an octahedral geometry around the zinc ion, with two chloro groups covalently attached. Density functional theory (DFT) studies of the synthesized Schiff base macrocyclic compounds were carried out to determine their structural and electronic properties. All of the synthesized compounds were evaluated for their biochemical properties, including antimicrobial, anti-inflammatory, and anticancer activities. The antimicrobial potential of the macrocyclic compounds was examined against a panel of pathogenic microbes, including Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), and fungal strains (Aspergillus niger and Candida albicans). The result showed that the macrocyclic complexes have remarkable antimicrobial potential as compared to their corresponding macrocyclic ligands at the same concentration. Then, the newly synthesized Schiff based macrocyclic compounds were evaluated for their anti-inflammatory activity using an egg albumin method in which the macrocyclic complex [Zn(N8O4L2)Cl-2] with an IC50 value of 8.36 mu g/mL was found to be the most potent anti-inflammatory compound, relative to sodium diclofenac (IC50 = 4.59 mu g/mL). The synthesized compounds were subjected to further evaluation to assess their potential as anticancer agents against MDA-MB-231 (human breast cancer cell line), HCT-116 (human colon cancer cell line), and A549 (human lung cancer cell line). Among them, the macrocyclic complex [Zn(N8O4L3)Cl-2] showed superior and more specific cytotoxicity against the tested cancer cell line, as demonstrated by its low IC50 value. In addition, molecular docking studies were conducted to explore the potential interactions between the newly synthesized compounds and the target proteins VEGFR2 (PDB ID 1YWN), EGFR (PDB ID 1M17), and DNA gyrase B (PDB ID 4URO). It was found that there was a high correlation between the experimental results and the docking calculations. Hence, these newly synthesized compounds can serve as inspiration for developing new anti-inflammatory and anticancer drugs. [GRAPHICS] .
引用
收藏
页码:4671 / 4712
页数:42
相关论文
共 50 条
  • [1] Synthesis, DFT calculation, molecular docking studies and biological evaluation of a novel series of Schiff base tetradentate macrocyclic ligands and their Zn(II) complexes as antimicrobial, anti-inflammatory and anticancer agents
    Ashu Mamta
    Research on Chemical Intermediates, 2023, 49 : 4671 - 4712
  • [2] Synthesis, spectroscopic elucidation, density functional theory calculation, and molecular docking studies of a novel series of tetradentate macrocyclic Schiff base ligands and their Zn(II) complexes and investigations of their antimicrobial, anti-inflammatory, and anticancer activities
    Mamta
    Pinki
    Chaudhary, Ashu
    APPLIED ORGANOMETALLIC CHEMISTRY, 2024, 38 (02)
  • [3] Biological evaluation, DFT, MEP, HOMO-LUMO analysis and ensemble docking studies of Zn(II) complexes of bidentate and tetradentate Schiff base ligands as antileukemia agents
    Akbari, Zahra
    Stagno, Claudio
    Iraci, Nunzio
    Efferth, Thomas
    Omer, Ejlal A.
    Piperno, Anna
    Montazerozohori, Morteza
    Feizi-Dehnayebi, Mehran
    Micale, Nicola
    JOURNAL OF MOLECULAR STRUCTURE, 2024, 1301
  • [4] Synthesis, characterization, antimicrobial, BSA binding, DFT calculation, molecular docking and cytotoxicity of Ni(II) complexes with Schiff base ligands
    Rani, J. Jeevitha
    Jayaseeli, A. Mary Imelda
    Rajagopal, S.
    Seenithurai, S.
    Chai, Jeng-Da
    Raja, J. Dhaveethu
    Rajasekaran, R.
    JOURNAL OF MOLECULAR LIQUIDS, 2021, 328
  • [5] Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff base ligands: synthesis, characterization, DFT, in vitro antimicrobial activity and molecular docking studies
    Sanjeev Kumar
    Jai Devi
    Amit Dubey
    Deepak Kumar
    Deepak Kumar Jindal
    Sonika Asija
    Archana Sharma
    Research on Chemical Intermediates, 2023, 49 : 939 - 965
  • [6] Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff base ligands: synthesis, characterization, DFT, in vitro antimicrobial activity and molecular docking studies
    Kumar, Sanjeev
    Devi, Jai
    Dubey, Amit
    Kumar, Deepak
    Jindal, Deepak Kumar
    Asija, Sonika
    Sharma, Archana
    RESEARCH ON CHEMICAL INTERMEDIATES, 2023, 49 (03) : 939 - 965
  • [7] Synthesis, structure elucidation, antioxidant, antimicrobial, anti-inflammatory and molecular docking studies of transition metal(II) complexes derived from heterocyclic Schiff base ligands
    Binesh Kumar
    Jai Devi
    Anju Manuja
    Research on Chemical Intermediates, 2023, 49 : 2455 - 2493
  • [8] Synthesis, structure elucidation, antioxidant, antimicrobial, anti-inflammatory and molecular docking studies of transition metal(II) complexes derived from heterocyclic Schiff base ligands
    Kumar, Binesh
    Devi, Jai
    Manuja, Anju
    RESEARCH ON CHEMICAL INTERMEDIATES, 2023, 49 (06) : 2455 - 2493
  • [9] Synthesis and Biological Evaluation of Novel Zn(II) and Cd(II) Schiff Base Complexes as Antimicrobial, Antifungal, and Antioxidant Agents
    Aljahdali, Mutlaq S.
    El-Sherif, Ahmed A.
    BIOINORGANIC CHEMISTRY AND APPLICATIONS, 2020, 2020
  • [10] Synthesis, biological evaluation and molecular docking studies of novel diosgenin derivatives as anti-inflammatory agents
    Zhang, Sheng-Nan
    Mu, Xiao-Dong
    Zhang, Xiao-Fan
    Luan, Ming-Zhu
    Ma, Guang-Qun
    Li, Wei
    Meng, Qing-Guo
    Chai, Xiao-Yun
    Hou, Gui-Ge
    BIOORGANIC CHEMISTRY, 2022, 127