Lipschitz continuity of tangent directions at infinity

被引:0
|
作者
Dinh, Si Tiep [1 ,2 ]
Pham, Tien-Son [3 ]
机构
[1] VAST, Inst Math, 18 Hoang Quoc Viet Rd, Hanoi 10307, Vietnam
[2] Polish Acad Sci, Inst Math, Sniadeckich 8, PL-00656 Warsaw, Poland
[3] Univ Dalat, Dept Math, 1 Phu Dong Thien Vuong, Da Lat, Vietnam
来源
关键词
Tangent cones at infinity; Tangent directions at infinity; Asymptotic critical values; Volume; GENERALIZED CRITICAL-VALUES; ISOLATED SINGULARITIES; POLYNOMIAL FUNCTION; BIFURCATION SET; SARD THEOREM; FAMILIES; FIBRATION;
D O I
10.1016/j.bulsci.2022.103223
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We relate the set of asymptotic critical values of a polynomial f: Rn & RARR; R with the set of discontinuity of two functions: the first one is a set-valued function which associates to each t & ISIN; R the set of tangent directions at infinity of the fiber f-1(t) and the second one is the (n - 2)-dimensional volume of the first one.& COPY; 2022 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Lipschitz continuity of Lipschitz-Killing curvature densities at infinity
    Dinh, Si Tiep
    Nguyen, Nhan
    SELECTA MATHEMATICA-NEW SERIES, 2025, 31 (02):
  • [2] Lipschitz Normally Embedded Set and Tangent Cones at Infinity
    Dias, Luis Renato G.
    Ribeiro, Nilva Rodrigues
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (02)
  • [3] Lipschitz Normally Embedded Set and Tangent Cones at Infinity
    Luis Renato G. Dias
    Nilva Rodrigues Ribeiro
    The Journal of Geometric Analysis, 2022, 32
  • [4] LIPSCHITZ CONTINUITY OF H-INFINITY INTERPOLATION
    WANG, LY
    ZAMES, G
    SYSTEMS & CONTROL LETTERS, 1990, 14 (05) : 381 - 387
  • [5] Tangent Lines and Lipschitz Differentiability Spaces
    Cavalletti, Fabio
    Rajala, Tapio
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2016, 4 (01): : 85 - 103
  • [6] On tangent cones at infinity of algebraic varieties
    Cong-Trinh Le
    Tien-Son Pham
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (08)
  • [7] Tangent lines of contact for the infinity Laplacian
    Yifeng Yu
    Calculus of Variations and Partial Differential Equations, 2004, 21 : 349 - 355
  • [8] Tangent lines of contact for the infinity Laplacian
    Yu, YF
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2004, 21 (04) : 349 - 355
  • [9] Optimal Lipschitz extensions and the infinity laplacian
    Crandall M.G.
    Evans L.C.
    Gariepy R.F.
    Calculus of Variations and Partial Differential Equations, 2001, 13 (2) : 123 - 139
  • [10] Optimal Lipschitz extensions and the infinity laplacian
    Crandall, MG
    Evans, LC
    Gariepy, RF
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2001, 13 (02) : 123 - 139