Ultrafast spectroscopic study on non-adiabatic UV protection mechanism of hemicyanines

被引:1
|
作者
Zhang, Ming-shui [1 ,2 ]
Chu, Ya [1 ]
Wu, Zibo [1 ]
Guo, Yu-rong [1 ]
Shi, Ya-nan [1 ]
Wang, Chao [1 ]
Wang, Meng-qi [1 ]
Zhong, Ying-qian [1 ]
Zhang, Hao-yue [1 ]
Wang, Ya-nan [1 ]
Wang, Jun [2 ]
Zhao, Guang-jiu [1 ]
机构
[1] Tianjin Univ, Sch Sci, Dept Chem, Tianjin Key Lab Mol Optoelect Sci, Tianjin 300354, Peoples R China
[2] Northeast Petr Univ, Coll Chem & Chem Engn, Daqing 163318, Peoples R China
基金
中国国家自然科学基金;
关键词
Hemicyanine; Ultraviolet photoabsorber; Potential energy surface; Non-adiabatic; Trans-cis photoisomerization; EXCITED-STATE DYNAMICS; METHOXY METHYLCINNAMATE; FLUORESCENT-PROBES; DYEING PROPERTIES; DYES; PHOTOISOMERIZATION; ABSORPTION; ISOMERIZATION; CHEMOSENSORS; DERIVATIVES;
D O I
10.1063/1674-0068/cjcp2104078
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
In this work, we firstly elucidated the ultra-violet light protection dynamics mechanism of the typical hemicyanines, i.e. Hemicy and DHemicy, by combining the theoretical calculation method and the transient absorption spectra. It is theoretically and experimentally demonstrated that both Hemicy and DHemicy have strong absorption in UVC (200-280 nm), UVB (280-300 nm), and UVA (320-400 nm) regions. More-over, after absorbing energy, Hemicy and DHemicy can jump into the excited states. Subsequently, Hemicy and DHemicy relax to S-0 states from S-1 states rapidly by the non-adiabatic transition at the conical intersection point between the potential energy curves of S-1 and S-0 states, and are accompanied by the trans-cis photoisomerism. The transient absorption spectra show that trans-cis photoisomerization occur within a few picoseconds. Thus, the ultraviolet energy absorbed by Hemicy and DHemicy could be relaxed ultrafastly by the non-adiabatic trans-cis photoisomerization processes. [GRAPHICS]
引用
下载
收藏
页码:25 / 34
页数:10
相关论文
共 50 条
  • [1] Ultrafast spectroscopic and quantum non-adiabatic simulations of solvated electrons and atoms
    Schwartz, Benjamin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [2] MECHANISM OF NON-ADIABATIC BIMOLECULAR REACTIONS
    NIKITIN, EE
    USPEKHI KHIMII, 1974, 43 (11) : 1905 - 1930
  • [3] Non-adiabatic and ultrafast dynamics of hydrogen adsorbed on silicon
    Kolasinski, KW
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2004, 8 (05): : 353 - 366
  • [4] ADIABATIC AND NON-ADIABATIC ELECTRON TRANSFER MECHANISM OF FLUORESCENCE QUENCHING
    MATAGA, N
    EZUMI, K
    TAKAHASHI, K
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-FRANKFURT, 1965, 44 (3-4): : 250 - +
  • [5] MECHANISM OF NON-ADIABATIC LOSSES IN A DIPOLE TRAP
    ILYIN, VD
    ILYINA, AN
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1978, 75 (02): : 518 - 523
  • [6] Ultrafast non-adiabatic dynamics of ethylene including Rydberg states
    Sellner, Bernhard
    Barbatti, Mario
    Mueller, Thomas
    Domcke, Wolfgang
    Lischka, Hans
    MOLECULAR PHYSICS, 2013, 111 (16-17) : 2439 - 2450
  • [7] Photoinduced Ultrafast Wolff Rearrangement: A Non-Adiabatic Dynamics Perspective
    Cui, Ganglong
    Thiel, Walter
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (01) : 433 - 436
  • [8] STUDY OF NON-ADIABATIC TRANSITIONS WITH APPLICATION TO NO
    LIN, SH
    THEORETICA CHIMICA ACTA, 1967, 8 (01): : 1 - &
  • [9] Ultrafast hydrogen migration in acetylene cation driven by non-adiabatic effects
    Madjet, Mohamed El-Amine
    Li, Zheng
    Vendrell, Oriol
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (09):
  • [10] ASYMPTOTIC STUDY OF NON-ADIABATIC SPHERICAL FLAMES
    DESHAIES, B
    JOULIN, G
    CLAVIN, P
    JOURNAL DE MECANIQUE, 1981, 20 (04): : 691 - 735