Comparison of the Discrimination Performance of AI Scoring and the Brixia Score in Predicting COVID-19 Severity on Chest X-Ray Imaging: Diagnostic Accuracy Study

被引:0
|
作者
Tenda, Eric Daniel [1 ]
Yunus, Reyhan Eddy [2 ]
Zulkarnaen, Benny [2 ]
Yugo, Muhammad Reynalzi [2 ]
Pitoyo, Ceva Wicaksono [1 ]
Asaf, Moses Mazmur [2 ]
Islamiyati, Tiara Nur [1 ]
Pujitresnani, Arierta [3 ]
Setiadharma, Andry [1 ]
Henrina, Joshua [1 ]
Rumende, Cleopas Martin [1 ]
Wulani, Vally [2 ]
Harimurti, Kuntjoro [4 ]
Lydia, Aida [5 ]
Shatri, Hamzah [6 ]
Soewondo, Pradana [7 ]
Yusuf, Prasandhya Astagiri [3 ,8 ]
机构
[1] Univ Indonesia, RSUPN Dr Cipto Mangunkusumo, Fac Med, Dept Internal Med,Pulm & Crit Care Div, Jakarta, Indonesia
[2] Univ Indonesia, RSUPN Dr Cipto Mangunkusumo, Dept Radiol, Jakarta, Indonesia
[3] Univ Indonesia, Fac Med, Med Technol Cluster IMERI, Dept Med Physiol & Biophys, Jakarta, Indonesia
[4] Univ Indonesia, RSUPN Dr Cipto Mangunkusumo, Fac Med, Dept Internal Med,Geriatr Div, Jakarta, Indonesia
[5] Univ Indonesia, RSUPN Dr Cipto Mangunkusumo, Fac Med, Dept Internal Med,Nephrol & Hypertens Div, Jakarta, Indonesia
[6] Univ Indonesia, RSUPN Dr Cipto Mangunkusumo, Fac Med, Dept Internal Med,Psychosomat Div, Jakarta, Indonesia
[7] Univ Indonesia, RSUPN Dr Cipto Mangunkusumo, Fac Med, Dept Internal Med,Endocrinol Metab Diabet Div, Jakarta, Indonesia
[8] Univ Indonesia, Med Technol Cluster IMERI, Dept Med Physiol & Biophys, Fac Med, Jalan Salemba Raya 6, Jakarta 10430, Indonesia
关键词
artificial intelligence; Brixia; chest x-ray; COVID-19; CAD4COVID; pneumonia; radiograph; artificial intelligence scoring system; AI scoring system; prediction; disease severity;
D O I
10.2196/46817
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: The artificial intelligence (AI) analysis of chest x-rays can increase the precision of binary COVID-19 diagnosis. However, it is unknown if AI -based chest x-rays can predict who will develop severe COVID-19, especially in low- and middle -income countries. Objective: The study aims to compare the performance of human radiologist Brixia scores versus 2 AI scoring systems in predicting the severity of COVID-19 pneumonia. Methods: We performed a cross-sectional study of 300 patients suspected with and with confirmed COVID-19 infection in Jakarta, Indonesia. A total of 2 AI scores were generated using CAD4COVID x-ray software. Results: The AI probability score had slightly lower discrimination (area under the curve [AUC] 0.787, 95% CI 0.722-0.852). The AI score for the affected lung area (AUC 0.857, 95% CI 0.809-0.905) was almost as good as the human Brixia score (AUC 0.863, 95% CI 0.818-0.908). Conclusions: The AI score for the affected lung area and the human radiologist Brixia score had similar and good discrimination performance in predicting COVID-19 severity. Our study demonstrated that using AI -based diagnostic tools is possible, even in low -resource settings. However, before it is widely adopted in daily practice, more studies with a larger scale and that are prospective in nature are needed to confirm our findings.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Chest X-Ray Imaging Severity Score of COVID-19 Pneumonia
    Garea-Llano, Eduardo
    Diaz-Berenguer, Abel
    Sahli, Hichem
    Gonzalez-Dalmau, Evelio
    [J]. PATTERN RECOGNITION, MCPR 2023, 2023, 13902 : 211 - 220
  • [2] Chest x-ray imaging score is associated with severity of COVID-19 pneumonia: the MBrixia score
    Jensen, Christian M.
    Costa, Junia C.
    Norgaard, Jens C.
    Zucco, Adrian G.
    Neesgaard, Bastian
    Niemann, Carsten U.
    Ostrowski, Sisse R.
    Reekie, Joanne
    Holten, Birgit
    Kalhauge, Anna
    Matthay, Michael A.
    Lundgren, Jens D.
    Helleberg, Marie
    Moestrup, Kasper S.
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [3] Chest x-ray imaging score is associated with severity of COVID-19 pneumonia: the MBrixia score
    Christian M. Jensen
    Junia C. Costa
    Jens C. Nørgaard
    Adrian G. Zucco
    Bastian Neesgaard
    Carsten U. Niemann
    Sisse R. Ostrowski
    Joanne Reekie
    Birgit Holten
    Anna Kalhauge
    Michael A. Matthay
    Jens D. Lundgren
    Marie Helleberg
    Kasper S. Moestrup
    [J]. Scientific Reports, 12
  • [4] Performance of chest X-ray scoring in predicting disease severity and outcomes of patients hospitalised with COVID-19 in Bangladesh
    Shaima, Shamsun Nahar
    Haque, Md Ahshanul
    Sarmin, Monira
    Nuzhat, Sharika
    Jahan, Yasmin
    Matin, Fariha Bushra
    Shahrin, Lubaba
    Afroze, Farzana
    Saha, Haimanti
    Timu, Rehnuma Tabassum
    Kamal, Mehnaz
    Bin Shahid, Abu Sadat Mohammad Sayeem
    Sultana, Nadia
    Mamun, Gazi Md. Salahuddin
    Chisti, Mohammod Jobayer
    Ahmed, Tahmeed
    [J]. SAGE OPEN MEDICINE, 2024, 12
  • [5] The mortality predicting ability of chest X-ray severity scoring systems in COVID-19 pneumonia
    Kodikara, Iroshani
    Galabada, Buddhi Anjani
    Hettiarachchi, Sashikala
    [J]. CEYLON MEDICAL JOURNAL, 2021, 66 (04) : 168 - 176
  • [6] Is chest X-ray severity scoring for COVID-19 pneumonia reliable?
    Abo-Hedibah, Sherif A.
    Tharwat, Nehal
    Elmokadem, Ali H.
    [J]. POLISH JOURNAL OF RADIOLOGY, 2021, 86 : E432 - E439
  • [7] Brixia Chest X-ray Scoring System in Critically Ill Patients with COVID-19 Pneumonia for Determining Outcomes
    Agrawal, Nishant
    Chougale, Samruddhi Dhanaji
    Jedge, Prashant
    Iyer, Shivakumar
    Dsouza, John
    [J]. JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH, 2021, 15 (08)
  • [8] Comparison of Different Models in Predicting COVID-19 Severity Based on Chest X-Ray Scans
    Yao, Eric
    Liao, Rory
    Shalaginov, Mikhail
    Zeng, Tingying Helen
    [J]. 2022 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES, IECBES, 2022, : 62 - 65
  • [9] Predicting COVID-19 Pneumonia Severity on Chest X-ray With Deep Learning
    Cohen, Joseph Paul
    Dao, Lan
    Morrison, Paul
    Roth, Karsten
    Bengio, Yoshua
    Shen, Beiyi
    Abbasi, Almas
    Hoshmand-Kochi, Mahsa
    Ghassemi, Marzyeh
    Li, Haifang
    Duong, Tim Q.
    [J]. CUREUS JOURNAL OF MEDICAL SCIENCE, 2020, 12 (07)
  • [10] Chest X-ray severity score Brixia: From marker of early COVID-19 infection to predictor of worse outcome in internal medicine wards
    Carbone, Federico
    Casaleggio, Alessandro
    Fiannacca, Martina
    Borda, Fabio
    Ministrini, Stefano
    Vischi, Giulia
    Carpaneto, Valeria
    Sobrero, Matteo
    Monti, Chiara
    De Stefano, Daria
    Saccomanno, Benedetta
    Massone, Marcella
    Piccardo, Arianna
    Calvia, Alessandro
    Vischi, Federica
    Bagnasco, Maddalena
    Magnani, Ottavia
    Caiti, Matteo
    Cenni, Elisabetta
    Ballarino, Paola
    Giuntini, Patrizia
    Barreca, Alessandra
    Tognoni, Chiara
    Pirisi, Federica
    Canepa, Paolo
    Cerminara, Domenico
    Pelanconi, Lisa
    Strozzi, Michele
    Thneibat, Amedeo
    Stabile, Mario
    Felix, Edineia
    Dasso, Selena
    Casini, Cecilia
    Minetti, Alberto
    Poggi, Andrea Lorenzo
    Gonella, Roberta
    Ferrando, Fabio
    Bellodi, Andrea
    Ballestrero, Alberto
    Barbera, Paolo
    Arboscello, Eleonora
    Pende, Aldo
    Moscatelli, Paolo
    Cittadini, Giuseppe
    Montecucco, Fabrizio
    [J]. EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2023, 53 (02)