Robust claim frequency modeling through phase-type mixture-of-experts regression

被引:0
|
作者
Bladt, Martin [1 ]
Yslas, Jorge [2 ]
机构
[1] Univ Copenhagen, Dept Math Sci, DK-2100 Copenhagen, Denmark
[2] Univ Liverpool, Inst Financial & Actuanal Math, Liverpool L69 7ZL, England
来源
关键词
Discrete phase-type distributions; Regression modeling; Claim count distributions; INFLATED POISSON REGRESSION; GENERAL INSURANCE;
D O I
10.1016/j.insmatheco.2023.02.008
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper addresses the problem of modeling loss frequency using regression when the counts have a non-standard distribution. We propose a novel approach based on mixture-of-experts specifications on discrete-phase type distributions. Compared to continuous phase-type counterparts, our approach offers fast estimation via expectation-maximization, making it more feasible for use in real-life scenarios. Our model is both robust and interpretable in terms of risk classes, and can be naturally extended to the multivariate case through two different constructions. This avoids the need for ad-hoc multivariate claim count modeling. Overall, our approach provides a more effective solution for modeling loss frequency in non-standard situations.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [1] Phase-type mixture-of-experts regression for loss severities
    Bladt, Martin
    Yslas, Jorge
    [J]. SCANDINAVIAN ACTUARIAL JOURNAL, 2023, 2023 (04) : 303 - 329
  • [2] PHASE-TYPE DISTRIBUTIONS FOR CLAIM SEVERITY REGRESSION MODELING
    Bladt, Martin
    [J]. ASTIN BULLETIN-THE JOURNAL OF THE INTERNATIONAL ACTUARIAL ASSOCIATION, 2022, 52 (02) : 417 - 448
  • [3] Practical and theoretical aspects of mixture-of-experts modeling: An overview
    Nguyen, Hien D.
    Chamroukhi, Faicel
    [J]. WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 8 (04)
  • [4] Regularized Maximum-Likelihood Estimation of Mixture-of-Experts for Regression and Clustering
    Chamroukhi, Faicel
    Bao Tuyen Huynh
    [J]. 2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [5] Hierarchical Mixture-of-Experts approach for neural compact modeling of MOSFETs
    Park, Chanwoo
    Vincent, Premkumar
    Chong, Soogine
    Park, Junghwan
    Cha, Ye Sle
    Cho, Hyunbo
    [J]. SOLID-STATE ELECTRONICS, 2023, 199
  • [6] Infinite mixture-of-experts model for sparse survival regression with application to breast cancer
    Raman, Sudhir
    Fuchs, Thomas J.
    Wild, Peter J.
    Dahl, Edgar
    Buhmann, Joachim M.
    Roth, Volker
    [J]. BMC BIOINFORMATICS, 2010, 11
  • [7] Infinite mixture-of-experts model for sparse survival regression with application to breast cancer
    Sudhir Raman
    Thomas J Fuchs
    Peter J Wild
    Edgar Dahl
    Joachim M Buhmann
    Volker Roth
    [J]. BMC Bioinformatics, 11
  • [8] AN IMAGE CODING APPROACH BASED ON MIXTURE-OF-EXPERTS REGRESSION USING EPANECHNIKOV KERNEL
    Liu, Boning
    Zhao, Yan
    Jiang, Xiaomeng
    Wang, Shigang
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 1807 - 1811
  • [9] Modeling Task Relationships in Multivariate Soft Sensor With Balanced Mixture-of-Experts
    Huang, Yuxin
    Wang, Eric Hao
    Liu, Zhaoran
    Pan, Licheng
    Li, Haozhe
    Liu, Xinggao
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (05) : 6556 - 6564
  • [10] UNIVERSAL IMAGE CODING APPROACH USING SPARSE STEERED MIXTURE-OF-EXPERTS REGRESSION
    Verhack, Ruben
    Sikora, Thomas
    Lange, Lieven
    Van Wallendael, Glenn
    Lambert, Peter
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 2142 - 2146