Beyond Sharing: Conflict-Aware Multivariate Time Series Anomaly Detection

被引:1
|
作者
Si, Haotian [5 ]
Pei, Changhua [1 ]
Li, Zhihan [2 ]
Zhao, Yadong [1 ]
Li, Jingjing [1 ]
Zhang, Haiming [1 ]
Diao, Zulong [3 ,6 ]
Li, Jianhui [1 ]
Xie, Gaogang [1 ]
Pei, Dan [4 ]
机构
[1] Chinese Acad Sci, Comp Network Informat Ctr, Beijing, Peoples R China
[2] Kuaishou Technol, Beijing, Peoples R China
[3] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
[4] Tsinghua Univ, Beijing, Peoples R China
[5] Univ Chinese Acad Sci, Beijing, Peoples R China
[6] Purple Mt Labs, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Unsupervised Anomaly Detection; Multivariate Time Series;
D O I
10.1145/3611643.3613896
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Massive key performance indicators (KPIs) are monitored as multivariate time series data (MTS) to ensure the reliability of the software applications and service system. Accurately detecting the abnormality of MTS is very critical for subsequent fault elimination. The scarcity of anomalies and manual labeling has led to the development of various self-supervised MTS anomaly detection (AD) methods, which optimize an overall objective/loss encompassing all metrics' regression objectives/losses. However, our empirical study uncovers the prevalence of conflicts among metrics' regression objectives, causing MTS models to grapple with different losses. This critical aspect significantly impacts detection performance but has been overlooked in existing approaches. To address this problem, by mimicking the design of multi-gate mixture-of-experts (MMoE), we introduce CAD, a Conflict-aware multivariate KPI Anomaly Detection algorithm. CAD offers an exclusive structure for each metric to mitigate potential conflicts while fostering inter-metric promotions. Upon thorough investigation, we find that the poor performance of vanilla MMoE mainly comes from the input-output misalignment settings of MTS formulation and convergence issues arising from expansive tasks. To address these challenges, we propose a straightforward yet effective task-oriented metric selection and p&s (personalized and shared) gating mechanism, which establishes CAD as the first practicable multi-task learning (MTL) based MTS AD model. Evaluations on multiple public datasets reveal that CAD obtains an average F1-score of 0.943 across three public datasets, notably outperforming state-of-the-art methods. Our code is accessible at https://github.com/dawnvince/MTS_CAD
引用
收藏
页码:1635 / 1645
页数:11
相关论文
共 50 条
  • [1] Generative Anomaly Detection in Multivariate Time Series
    Hoh, M.
    Schöttl, A.
    Schaub, H.
    Leuze, N.
    Automation, Robotics and Communications for Industry 4.0/5.0, 2023, 2023 : 171 - 174
  • [2] An anomaly detection model for multivariate time series with anomaly perception
    Wei, Dong
    Sun, Wu
    Zou, Xiaofeng
    Ma, Dan
    Xu, Huarong
    Chen, Panfeng
    Yang, Chaoshu
    Chen, Mei
    Li, Hui
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [3] An anomaly detection model for multivariate time series with anomaly perception
    Wei, Dong
    Sun, Wu
    Zou, Xiaofeng
    Ma, Dan
    Xu, Huarong
    Chen, Panfeng
    Yang, Chaoshu
    Chen, Mei
    Li, Hui
    PeerJ Computer Science, 2024, 10
  • [4] Multivariate Time Series Anomaly Detection with Fourier Time Series Transformer
    Ye, Yufeng
    He, Qichao
    Zhang, Peng
    Xiao, Jie
    Li, Zhao
    2023 IEEE 12TH INTERNATIONAL CONFERENCE ON CLOUD NETWORKING, CLOUDNET, 2023, : 381 - 388
  • [5] Generality-aware self-supervised transformer for multivariate time series anomaly detection
    Cho, Yucheol
    Lee, Jae-Hyeok
    Ham, Gyeongdo
    Jang, Donggon
    Kim, Dae-shik
    APPLIED INTELLIGENCE, 2025, 55 (07)
  • [6] Adaptive Multivariate Time-Series Anomaly Detection
    Lv, Jianming
    Wang, Yaquan
    Chen, Shengjing
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (04)
  • [7] Contextual anomaly detection for multivariate time series data
    Kim, Hyojoong
    Kim, Heeyoung
    QUALITY ENGINEERING, 2023, 35 (04) : 686 - 695
  • [8] Anomaly detection in multivariate time series of drilling data
    Altindal, Mehmet Cagri
    Nivlet, Philippe
    Tabib, Mandar
    Rasheed, Adil
    Kristiansen, Tron Golder
    Khosravanian, Rasool
    GEOENERGY SCIENCE AND ENGINEERING, 2024, 237
  • [9] An Evaluation of Anomaly Detection and Diagnosis in Multivariate Time Series
    Garg, Astha
    Zhang, Wenyu
    Samaran, Jules
    Savitha, Ramasamy
    Foo, Chuan-Sheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) : 2508 - 2517
  • [10] Contrastive autoencoder for anomaly detection in multivariate time series
    Zhou, Hao
    Yu, Ke
    Zhang, Xuan
    Wu, Guanlin
    Yazidi, Anis
    INFORMATION SCIENCES, 2022, 610 : 266 - 280