Adaptive warped kernel estimation for nonparametric regression with circular responses

被引:0
|
作者
Nguyen, Tien Dat [1 ]
Ngoc, Thanh Mai Pham [2 ]
Rivoirard, Vincent [3 ]
机构
[1] Vietnam Natl Univ Ho Chi Minh City, Univ Sci, Fac Math & Comp Sci, Ho Chi Minh City, Vietnam
[2] Univ Sorbonne Paris Nord, Inst Galilee, LAGA, CNRS,UMR 7539, F-93430 Villetaneuse, France
[3] Univ PSL, Univ Paris Dauphine, CEREMADE, CNRS, F-75016 Paris, France
来源
ELECTRONIC JOURNAL OF STATISTICS | 2023年 / 17卷 / 02期
关键词
and phrases; Circular data; nonparametric regression; warp-ing method; kernel rule; adaptive minimax estimation; Goldenshluger-Lepski procedure; RANDOM DESIGN; MODELS;
D O I
10.1214/23-EJS2186
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we deal with nonparametric regression for cir-cular data, meaning that observations are represented by points lying on the unit circle. We propose a kernel estimation procedure with data-driven selection of the bandwidth parameter. For this purpose, we use a warping strategy combined with a Goldenshluger-Lepski type estimator. To study optimality of our methodology, we consider the minimax setting and prove, by establishing upper and lower bounds, that our procedure is nearly op-timal on anisotropic Holder classes of functions for pointwise estimation. The obtained rates also reveal the specific nature of regression for circular responses. Finally, a numerical study is conducted, illustrating the good performances of our approach.
引用
收藏
页码:4011 / 4048
页数:38
相关论文
共 50 条
  • [1] Multivariate adaptive warped kernel estimation
    Chagny, Gaelle
    Laloe, Thomas
    Servien, Remi
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (01): : 1759 - 1789
  • [2] Nonparametric kernel regression estimation near endpoints
    Kyung-Joon, C
    Schucany, WR
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 66 (02) : 289 - 304
  • [3] Median regression using nonparametric kernel estimation
    Subramanian, S
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2002, 14 (05) : 583 - 605
  • [4] ADAPTIVE ESTIMATION IN A HETEROSCEDASTIC NONPARAMETRIC REGRESSION
    Pchelintsev, E. A.
    Perelevskiy, S. S.
    [J]. VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2019, (57): : 38 - 52
  • [5] Nonparametric multiple regression estimation for circular response
    Andrea Meilán-Vila
    Mario Francisco-Fernández
    Rosa M. Crujeiras
    Agnese Panzera
    [J]. TEST, 2021, 30 : 650 - 672
  • [6] Nonparametric multiple regression estimation for circular response
    Meilan-Vila, Andrea
    Francisco-Fernandez, Mario
    Crujeiras, Rosa M.
    Panzera, Agnese
    [J]. TEST, 2021, 30 (03) : 650 - 672
  • [7] Methodology for nonparametric bias reduction in kernel regression estimation
    Slaoui, Yousri
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2023, 29 (01): : 55 - 77
  • [8] ADAPTIVE M-ESTIMATION IN NONPARAMETRIC REGRESSION
    HALL, P
    JONES, MC
    [J]. ANNALS OF STATISTICS, 1990, 18 (04): : 1712 - 1728
  • [9] Adaptive estimation in the functional nonparametric regression model
    Chagny, Gaelle
    Roche, Angelina
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 146 : 105 - 118
  • [10] ADAPTIVE ESTIMATION OF FUNCTIONALS IN NONPARAMETRIC INSTRUMENTAL REGRESSION
    Breunig, Christoph
    Johannes, Jan
    [J]. ECONOMETRIC THEORY, 2016, 32 (03) : 612 - 654