FT-LVIO: Fully Tightly coupled LiDAR-Visual-Inertial odometry

被引:3
|
作者
Zhang, Zhuo [1 ]
Yao, Zheng [1 ,2 ]
Lu, Mingquan [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China
[2] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
来源
IET RADAR SONAR AND NAVIGATION | 2023年 / 17卷 / 05期
基金
中国国家自然科学基金;
关键词
Kalman filters; navigation; odometry; sensor fusion; ROBUST; VERSATILE; SLAM;
D O I
10.1049/rsn2.12376
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a fully tightly-coupled multi-sensor fusion framework termed FT-LVIO, that fuses measurements from a light detection and ranging (LiDAR), a monocular camera and an inertial measurement unit (IMU) simultaneously to achieve robust and accurate state estimation in real time. FT-LVIO is built atop the framework of an error-state-iterated Kalman filter. To take full advantage of the complimentary characteristics of individual sensors, LiDAR point clouds are undistorted by IMU prediction to the nearest camera exposure time and the filter is updated with measurements from all sensors. In addition, an efficient sampling method for the LiDAR point-to-plane measurements is proposed, which can help select the measurements providing sufficient constraints to the pose estimation and facilitate a low-drift odometry. Extensive experiments are performed on both the public NTU dataset and the private handheld dataset, and the results show that the proposed FT-LVIO outperforms the state-of-the-art LiDAR-inertial, visual-inertial and LiDAR-visual-inertial methods in both accuracy and robustness. Furthermore, FT-LVIO can survive in the challenging staircase environment.
引用
收藏
页码:759 / 771
页数:13
相关论文
共 50 条
  • [1] LVIO-Fusion:Tightly-Coupled LiDAR-Visual-Inertial Odometry and Mapping in Degenerate Environments
    Zhang, Hongkai
    Du, Liang
    Bao, Sheng
    Yuan, Jianjun
    Ma, Shugen
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (04) : 3783 - 3790
  • [2] Development of tightly coupled based lidar-visual-inertial odometry
    Kim K.-W.
    Jung T.-K.
    Seo S.-H.
    Jee G.-I.
    Journal of Institute of Control, Robotics and Systems, 2020, 26 (08) : 597 - 603
  • [3] IMU Augment Tightly Coupled Lidar-Visual-Inertial Odometry for Agricultural Environments
    Hoang, Quoc Hung
    Kim, Gon-Woo
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (10): : 8483 - 8490
  • [4] Unified Multi-Modal Landmark Tracking for Tightly Coupled Lidar-Visual-Inertial Odometry
    Wisth, David
    Camurri, Marco
    Das, Sandipan
    Fallon, Maurice
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) : 1004 - 1011
  • [5] LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping
    Shan, Tixiao
    Englot, Brendan
    Ratti, Carlo
    Rus, Daniela
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 5692 - 5698
  • [6] R-LVIO: Resilient LiDAR-Visual-Inertial Odometry for UAVs in GNSS-denied Environment
    Zhang, Bing
    Shao, Xiangyu
    Wang, Yankun
    Sun, Guanghui
    Yao, Weiran
    DRONES, 2024, 8 (09)
  • [7] Detection-first tightly-coupled LiDAR-Visual-Inertial SLAM in dynamic environments
    Xu, Xiaobin
    Hu, Jinchao
    Zhang, Lei
    Cao, Chenfei
    Yang, Jian
    Ran, Yingying
    Tan, Zhiying
    Xu, Linsen
    Luo, Minzhou
    MEASUREMENT, 2025, 239
  • [8] F-LVINS: Flexible Lidar-Visual-Inertial Odometry Systems
    Tang, Xiang-Shi
    Cheng, Teng-Hu
    IEEE ACCESS, 2023, 11 : 104028 - 104037
  • [9] LiDAR-Visual-Inertial Odometry Based on Optimized Visual Point-Line Features
    He, Xuan
    Gao, Wang
    Sheng, Chuanzhen
    Zhang, Ziteng
    Pan, Shuguo
    Duan, Lijin
    Zhang, Hui
    Lu, Xinyu
    REMOTE SENSING, 2022, 14 (03)
  • [10] Efficient and adaptive lidar-visual-inertial odometry for agricultural unmanned ground vehicle
    Zhao, Zixu
    Zhang, Yucheng
    Long, Long
    Lu, Zaiwang
    Shi, Jinglin
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2022, 19 (02):