Approximation of Dirichlet-to-Neumann operator for problems of diffraction by planar obstacles covered with thin dielectric multilayers

被引:0
|
作者
Alliti, Bachir [1 ]
Laadj, Toufik [1 ,2 ]
M'hamed-messaoud, Khaled [1 ]
机构
[1] Univ Sci & Technol Houari Boumdiene USTHB, Dept Math, Lab SD, BP 32 El Alia Bab Ezzouar, Algiers 16111, Algeria
[2] Univ Sci & Technol Houari Boumdiene USTHB, Dept Math, Lab SD, Algiers 16111, Algeria
关键词
diffraction; Dirichlet-to-Neumann operator; electromagnetic scattering; thin dielectric layers; BOUNDARY-CONDITIONS; SCATTERING; WAVE; IMPEDANCE; DOMAIN;
D O I
10.1002/mma.8944
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested in diffraction problems of an electromagnetic wave by a perfectly conducting planar obstacle coated with thin multilayers of dielectric materials. The aim is to obtain boundary condition that replaces the effect of dielectric thin layers. This condition is constructed from an approximation of the Dirichlet-to-Neumann operator. In this paper, we analyze the construction and the approximation of this operator.
引用
收藏
页码:6843 / 6856
页数:14
相关论文
共 9 条
  • [1] Dirichlet-to-Neumann operator for diffraction problems in stratified anisotropic acoustic waveguides
    Tonnoir, Antoine
    COMPTES RENDUS MATHEMATIQUE, 2016, 354 (04) : 383 - 387
  • [2] Approximation of Dirichlet-to-Neumann operator for a planar thin layer and stabilization in the framework of couple stress elasticity with voids
    Abdallaoui, Athmane
    Kelleche, Abdelkarim
    ASYMPTOTIC ANALYSIS, 2024, 137 (3-4) : 245 - 265
  • [3] The Dirichlet-to-Neumann operator for divergence form problems
    A. F. M. ter Elst
    G. Gordon
    M. Waurick
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 177 - 203
  • [4] The Dirichlet-to-Neumann operator for divergence form problems
    ter Elst, A. F. M.
    Gordon, G.
    Waurick, M.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (01) : 177 - 203
  • [5] Symbol of the Dirichlet-to-Neumann operator in 2D diffraction problems with large wavenumber
    Kondratieva, MF
    Sadov, SY
    INTERNATIONAL SEMINAR DAY ON DIFFRACTION' 2003, PROCEEDINGS, 2003, : 88 - 98
  • [6] The Dirichlet-to-Neumann operator associated with the 1-Laplacian and evolution problems
    Hauer, Daniel
    Mazon, Jose M.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (01)
  • [7] The Dirichlet-to-Neumann operator associated with the 1-Laplacian and evolution problems
    Daniel Hauer
    José M. Mazón
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [8] A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator
    Conen, Lea
    Dolean, Victorita
    Krause, Rolf
    Nataf, Frederic
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 271 : 83 - 99
  • [9] A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator (vol 271, pg 83, 2014)
    Conen, Lea
    Dolean, Victorita
    Krause, Rolf
    Nataf, Frederic
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 290 : 670 - 674