No superconductivity in Pb9Cu1(PO4)6O found in orbital and spin fluctuation exchange calculations

被引:7
|
作者
Witt, Niklas [1 ,2 ]
Si, Liang [3 ,4 ]
Tomczak, Jan M. [2 ,4 ,5 ]
Held, Karsten [2 ,4 ]
Wehling, Tim O. [1 ,2 ]
机构
[1] Univ Hamburg, Inst Theoret Phys, Notkestr 9-11, D-22607 Hamburg, Germany
[2] Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22607 Hamburg, Germany
[3] Northwest Univ, Sch Phys, Xian 710127, Peoples R China
[4] TU Wien, Inst Solid State Phys, A-1040 Vienna, Austria
[5] Kings Coll London, Dept Phys, London WC2R 2LS, England
来源
SCIPOST PHYSICS | 2023年 / 15卷 / 05期
基金
奥地利科学基金会;
关键词
ELECTRONIC-STRUCTURE CALCULATIONS; CONSERVING APPROXIMATIONS; CORRELATED SYSTEMS; HUBBARD-MODEL; PHYSICS;
D O I
10.21468/SciPostPhys.15.5.197
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Finding a material that turns superconducting under ambient conditions has been the goal of over a century of research, and recently Pb10-xCux (PO4)6O aka LK-99 has been put forward as a possible contestant. In this work, we study the possibility of electronically driven superconductivity in LK-99 also allowing for electron or hole doping. We use an ab initio derived two-band model of the Cu eg orbitals for which we determine interaction values from the constrained random phase approximation (cRPA). For this two-band model we perform calculations in the fluctuation exchange (FLEX) approach to assess the strength of orbital and spin fluctuations. We scan over a broad range of parameters and enforce no magnetic or orbital symmetry breaking. Even under optimized conditions for superconductivity, spin and orbital fluctuations turn out to be too weak for superconductivity anywhere near to room-temperature. We contrast this finding to non self-consistent RPA, where it is possible to induce spin singlet d-wave superconductivity at Tc >= 300 K if the system is put close enough to a magnetic instability.
引用
收藏
页数:14
相关论文
共 40 条
  • [1] Magnetic fluctuations in Pb9Cu(PO4)6O
    Shimizu, Makoto
    Otsuki, Junya
    Jeschke, Harald O.
    [J]. PHYSICAL REVIEW B, 2023, 108 (20)
  • [2] Semiconductivity induced by spin–orbit coupling in Pb9Cu(PO4)6O
    Hua Bai
    Jianrong Ye
    Lei Gao
    Chunhua Zeng
    Wuming Liu
    [J]. Scientific Reports, 13 (1)
  • [3] Semiconductivity induced by spin-orbit coupling in Pb9Cu(PO4)6O
    Bai, Hua
    Ye, Jianrong
    Gao, Lei
    Zeng, Chunhua
    Liu, Wuming
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01):
  • [4] Chemical bonding in lead oxide phosphate Pb10(PO4)6O and in supposed superconductor Pb9Cu(PO4)6O
    Orlov, V. G.
    Sergeev, G. S.
    [J]. AIP ADVANCES, 2023, 13 (11)
  • [5] Pb9Cu(PO4)6O is a charge-transfer semiconductor
    Celiberti, Lorenzo
    Varrassi, Lorenzo
    Franchini, Cesare
    [J]. PHYSICAL REVIEW B, 2023, 108 (20)
  • [6] On the synthesis methodologies to prepare 'Pb9Cu(PO4)6O': phase, composition, magnetic analysis and absence of superconductivity
    Thakur, Gohil S.
    Schulze, Manuel
    Ruck, Michael
    [J]. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2024, 37 (01):
  • [7] First-principles calculation on the electronic structures, phonon dynamics, and electrical conductivities of Pb10(PO4)6O and Pb9Cu(PO4)6O compounds
    Hao, L. Y.
    Fu, E. G.
    [J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 173 : 218 - 224
  • [8] Symmetry breaking induced insulating electronic state in Pb9Cu(PO4)6O
    Liu, Jiaxi
    Yu, Tianye
    Li, Jiangxu
    Wang, Jiantao
    Lai, Junwen
    Sun, Yan
    Chen, Xing-Qiu
    Liu, Peitao
    [J]. PHYSICAL REVIEW B, 2023, 108 (16)
  • [9] Phase Stability of Lead Phosphate Apatite Pb10-x Cu x (PO4)6O, Pb10-x Cu x (PO4)6(OH)2 (x=0, 1), and Pb8Cu2(PO4)6
    Shen, Jiahong
    Gaines, Dale
    Shahabfar, Shima
    Li, Zhi
    Kang, Dohun
    Griesemer, Sean
    Salgado-Casanova, Adolfo
    Liu, Tzu-chen
    Chou, Chang-Ti
    Xia, Yi
    Wolverton, Chris
    [J]. CHEMISTRY OF MATERIALS, 2023, 36 (01) : 275 - 285
  • [10] Synthesis of possible room temperature superconductor LK-99: Pb9Cu(PO4)6O
    Kumar, Kapil
    Karn, N. K.
    Awana, V. P. S.
    [J]. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2023, 36 (10):