Computational Enzyme Redesign Enhances Tolerance to Denaturants for Peptide C-Terminal Amidation

被引:5
|
作者
Zhu, Tong [1 ]
Sun, Jinyuan [1 ]
Pang, Hua [1 ]
Wu, Bian [1 ]
机构
[1] Chinese Acad Sci, Inst Microbiol, AIM Ctr, Beijing 100101, Peoples R China
来源
JACS AU | 2024年 / 4卷 / 02期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
enzyme stability; denaturants; computationalredesign; machine learning; peptide C-terminal amidation; PROTEIN DENATURATION; GUANIDINIUM; STABILITY; UREA; PURIFICATION; MECHANISM; FEATURES;
D O I
10.1021/jacsau.3c00792
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The escalating demand for biocatalysts in pharmaceutical and biochemical applications underscores the critical imperative to enhance enzyme activity and durability under high denaturant concentrations. Nevertheless, the development of a practical computational redesign protocol for improving enzyme tolerance to denaturants is challenging due to the limitations of relying solely on model-driven approaches to adequately capture denaturant-enzyme interactions. In this study, we introduce an enzyme redesign strategy termed GRAPE_DA, which integrates multiple data-driven and model-driven computational methods to mitigate the sampling biases inherent in a single approach and comprehensively predict beneficial mutations on both the protein surface and backbone. To illustrate the methodology's effectiveness, we applied it to engineer a peptidylamidoglycolate lyase, resulting in a variant exhibiting up to a 24-fold increase in peptide C-terminal amidation activity under 2.5 M guanidine hydrochloride. We anticipate that this integrated engineering strategy will facilitate the development of enzymatic peptide synthesis and functionalization under denaturing conditions and highlight the role of engineering surface residues in governing protein stability.
引用
收藏
页码:788 / 797
页数:10
相关论文
共 50 条
  • [1] C-terminal peptide amidation catalyzed by orange flavedo peptide amidase
    Cerovsky, V
    Kula, MR
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 1998, 37 (13-14) : 1885 - 1887
  • [2] Revealing C-terminal peptide amidation by the use of the survival yield technique
    Logerot, Elodie
    Cazals, Guillaume
    Memboeuf, Antony
    Enjalbal, Christine
    ANALYTICAL BIOCHEMISTRY, 2022, 655
  • [3] Peptide amidase-catalyzed C-terminal peptide amidation in a mixture of organic solvents
    Cerovsky, V
    Kula, MR
    PEPTIDES FOR THE NEW MILLENNIUM, 2000, : 142 - 143
  • [4] The role of C-terminal amidation in the mechanism of action of the antimicrobial peptide aurein 1.2
    Shahmiri, Mandi
    Mechler, Adam
    EUROBIOTECH JOURNAL, 2020, 4 (01): : 25 - 31
  • [5] PEPTIDE C-TERMINAL ALPHA-AMIDATING ENZYME
    MIZUNO, K
    MATSUO, H
    SEIKAGAKU, 1988, 60 (07): : 551 - 557
  • [6] C-terminal Amidation of an Osteocalcin-derived Peptide Promotes Hydroxyapatite Crystallization
    Hosseini, Samaneh
    Naderi-Manesh, Hossein
    Mountassif, Driss
    Cerruti, Marta
    Vali, Hojatollah
    Faghihi, Shahab
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (11) : 7885 - 7893
  • [7] C-terminal amidation on aryl hydrazine resin
    Neugebauer, W.
    Day, R.
    BIOPOLYMERS, 2007, 88 (04) : 554 - 554
  • [8] C-Terminal Amidation On Aryl Hydrazine Resin
    Neugebauer, Witold A.
    Parent, Amelie
    Yuan, Xue Wen
    Day, Robert
    PEPTIDES FOR YOUTH, 2009, 611 : 371 - 372
  • [9] Structural function of C-terminal amidation of endomorphin
    In, Y
    Minoura, K
    Tomoo, K
    Sasaki, Y
    Lazarus, LH
    Okada, Y
    Ishida, T
    FEBS JOURNAL, 2005, 272 (19) : 5079 - 5097
  • [10] Propargyl-Assisted Selective Amidation Applied in C-terminal Glycine Peptide Conjugation
    Kenward King Ho Vong
    Maeda, Satoshi
    Tanaka, Katsunori
    CHEMISTRY-A EUROPEAN JOURNAL, 2016, 22 (52) : 18865 - 18872