Data-driven future for nanofiltration: Escaping linearity

被引:10
|
作者
Ignacz, Gergo [1 ]
Beke, Aron K. [1 ]
Szekely, Gyorgy [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Adv Membranes & Porous Mat Ctr, Phys Sci & Engn Div PSE, Thuwal 239556900, Saudi Arabia
来源
JOURNAL OF MEMBRANE SCIENCE LETTERS | 2023年 / 3卷 / 01期
关键词
Machine learning; Big data; Inverse design; Data science; Process analytical technologies; ORGANIC-SOLVENT NANOFILTRATION; HIGH-THROUGHPUT; ARTIFICIAL-INTELLIGENCE; MEMBRANES; DESIGN; OPTIMIZATION; PERFORMANCE; VALIDATION; ALGORITHM; TRANSPORT;
D O I
10.1016/j.memlet.2023.100040
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Compared with traditional membrane separation methods such as distillation and chromatography, nanofiltra-tion (NF) affords decreased waste generation and energy consumption. Despite the multiple advantages of NF and materials available for NF membranes, the industrial applicability of this process requires improvement. To address these challenges, we propose four important pillars for the future of membrane materials and process development. These four pillars are digitalization, structure-property analysis, miniaturization, and automation. We fill gaps in the development of NF membranes and processes by fostering the most promising contemporary technologies, e.g., the integration of process analytical technologies and the development of a parallel artificial nanofiltration permeability assay (PANPA) or large online databases. Moreover, we propose the extensive use of density functional theory-aided structure-property relationship methods to understand solute transport process at a molecular level. Realizing an inverse design would allow researchers and industrial scientists to develop custom membranes for specific applications using optimized properties.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Organic Solvent Nanofiltration and Data-Driven Approaches
    Piccard, Pieter-Jan
    Borges, Pedro
    Cleuren, Bart
    Hooyberghs, Jef
    Buekenhoudt, Anita
    [J]. SEPARATIONS, 2023, 10 (09)
  • [2] A data-driven future for Scottish farming?
    Loeb, Josh
    [J]. VETERINARY RECORD, 2022, 190 (01) : 7 - 7
  • [3] The Future of Data-Driven Wound Care
    Woods, Jon S.
    Saxena, Mayur
    Nagamine, Tasha
    Howell, Raelina S.
    Criscitelli, Theresa
    Gorenstein, Scott
    Gillette, Brian M.
    [J]. AORN JOURNAL, 2018, 107 (04) : 455 - 463
  • [4] Wellbeing Insights in a Data-Driven Future
    Visuri, Aku
    van Berkel, Niels
    Tag, Benjamin
    [J]. 2023 FOURTEENTH INTERNATIONAL CONFERENCE ON MOBILE COMPUTING AND UBIQUITOUS NETWORK, ICMU, 2023,
  • [5] Exploring The Future of Data-Driven Product Design
    Gorkovenko, Katerina
    Burnett, Daniel J.
    Thorp, James K.
    Richards, Daniel
    Murray-Rust, Dave
    [J]. PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), 2020,
  • [6] THE EVOLUTION AND FUTURE OF DATA-DRIVEN FINANCE IN THE EU
    Zetzsche, Dirk
    Arner, Douglas
    Buckley, Ross
    Weber, Rolf H.
    [J]. COMMON MARKET LAW REVIEW, 2020, 57 (02): : 331 - 359
  • [7] The Data-Driven Future of International Economic Law
    Alschner, Wolfgang
    Pauwelyn, Joost
    Puig, Sergio
    [J]. JOURNAL OF INTERNATIONAL ECONOMIC LAW, 2017, 20 (02) : 217 - 231
  • [8] DATA JOURNALISM SUSTAINABILITY An outlook on the future of data-driven reporting
    Stalph, Florian
    Borges-Rey, Eddy
    [J]. DIGITAL JOURNALISM, 2018, 6 (08) : 1078 - 1089
  • [9] Future government data strategies: data-driven enterprise or data steward?
    van Donge, W.
    Bharosa, N.
    Janssen, M. F. W. H. A.
    [J]. PROCEEDINGS OF THE 21ST ANNUAL INTERNATIONAL CONFERENCE ON DIGITAL GOVERNMENT RESEARCH, DGO 2020, 2020, : 196 - 204
  • [10] Data-driven investigation of process solvent and membrane material on organic solvent nanofiltration
    Ignacz, Gergo
    Beke, Aron K.
    Szekely, Gyorgy
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2023, 674