A Machine Learning Approach for Air-Quality Forecast by Integrating GNSS Radio Occultation Observation and Weather Modeling

被引:4
|
作者
Li, Wei [1 ,2 ,3 ,4 ,5 ,6 ]
Kang, Shengyu [7 ,8 ]
Sun, Yueqiang [1 ,2 ,3 ,4 ,5 ,6 ]
Bai, Weihua [1 ,2 ,3 ,4 ,5 ,6 ]
Wang, Yuhe [8 ,9 ,10 ]
Song, Hongqing [7 ,8 ]
机构
[1] Chinese Acad Sci, Natl Space Sci Ctr, NSSC CAS, Beijing 100190, Peoples R China
[2] Beijing Key Lab Space Environm Explorat, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Astron & Space Sci, Beijing 100049, Peoples R China
[4] CAS NSSC CAS, Natl Space Sci Ctr, Joint Lab Occultat Atmosphere & Climate JLOAC, Beijing 100190, Peoples R China
[5] Karl Franzens Univ Graz, Beijing 100190, Peoples R China
[6] Chinese Acad Sci, Key Lab Sci & Technol Space Environm Situat Awaren, Beijing 100190, Peoples R China
[7] Univ Sci & Technol Beijing, Sch Civil & Resource Engn, Beijing 100083, Peoples R China
[8] Natl & Local Joint Engn Lab Big Data Anal & Comp T, Beijing 100190, Peoples R China
[9] China Univ Petr East China, Sch Petr Engn, Qingdao 266580, Peoples R China
[10] Azureland Energy Technol, Qingdao 266000, Peoples R China
基金
中国国家自然科学基金;
关键词
GNSS radio occultation; machine learning; air-quality forecasting; artificial intelligence; NEURAL-NETWORKS; PREDICTION; POLLUTION; WRF; INDEX;
D O I
10.3390/atmos14010058
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Air-quality monitoring and forecasting are crucial for atmosphere pollution control and management. We propose an innovative data-driven framework for air quality index (AQI) prediction by integrating GNSS radio occultation (GNSS-RO) observation and weather modeling. Empowered by the state-of-the-art machine learning approach, our method can effectively predict regional AQI with a comparable accuracy much more quickly than the traditional numerical modeling and simulation approach. In a real case study using a representative region of China, our data-driven approach achieves a 2000 times speedup; meanwhile, the prediction error measured by rRMSE is only 2.4%. We investigate further the effects of different models, hyperparameters, and meteorological factors on the performance of our AQI prediction framework, and reveal that wind field and atmospheric boundary-layer height are important influencing factors of AQI. This paper showcases a direct application of GNSS-RO observation in assisting in forecasting regional AQI. From a machine learning point of view, it provides a new way to leverage the unique merits of GNSS atmospheric remote sensing technology with the help of the more traditional weather forecasting modeling approach.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A DIDACTIC APPROACH TO THE MACHINE LEARNING APPLICATION TO WEATHER FORECAST
    Raffaele, Marcello
    Caccamo, Maria Teresa
    Castorina, Giuseppe
    Lanza, Stefania
    Munao, Gianmarco
    Randazzo, Giovanni
    Magazu, Salvatore
    [J]. ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2021, 99 (S1):
  • [2] Performance Modeling of Weather Forecast Machine Learning for Efficient HPC
    Selvam, Karthick Panner
    Brorsson, Mats
    [J]. 2022 IEEE 42ND INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2022), 2022, : 1268 - 1269
  • [3] Using Machine Learning to Forecast Air and Water Quality
    Silva, Carolina
    Fernandes, Bruno
    Oliveira, Pedro
    Novais, Paulo
    [J]. ICAART: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 2, 2021, : 1210 - 1217
  • [4] Machine learning algorithms to forecast air quality: a survey
    Manuel Méndez
    Mercedes G. Merayo
    Manuel Núñez
    [J]. Artificial Intelligence Review, 2023, 56 : 10031 - 10066
  • [5] Machine learning algorithms to forecast air quality: a survey
    Mendez, Manuel
    Merayo, Mercedes G.
    Nunez, Manuel
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (09) : 10031 - 10066
  • [6] Automatic GNSS Ionospheric Scintillation Detection with Radio Occultation Data Using Machine Learning Algorithm
    Ji, Guangwang
    Jin, Ruimin
    Zhen, Weimin
    Yang, Huiyun
    Xu, Qizhi
    Zheng, Jin
    Gao, Feng
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (01):
  • [7] Machine Learning and Air Quality Modeling
    Keller, Christoph A.
    Evans, Mathew J.
    Kutz, J. Nathan
    Pawson, Steven
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 4570 - 4576
  • [8] A Machine Learning-Based Method for Wind Fields Forecasting Utilizing GNSS Radio Occultation Data
    Chu, Xuezhao
    Bai, Weihua
    Sun, Yueqiang
    Li, Wei
    Liu, Congliang
    Song, Hongqing
    [J]. IEEE ACCESS, 2022, 10 : 30258 - 30273
  • [9] Integrating uncertainty propagation in GNSS radio occultation retrieval: From bending angle to dry-air atmospheric profiles
    Schwarz, Jakob
    Kirchengast, Gottfried
    Schwaerz, Marc
    [J]. EARTH AND SPACE SCIENCE, 2017, 4 (04): : 200 - 228
  • [10] Machine learning algorithms in air quality modeling
    Masih, A.
    [J]. GLOBAL JOURNAL OF ENVIRONMENTAL SCIENCE AND MANAGEMENT-GJESM, 2019, 5 (04): : 515 - 534