Morse theory for discrete magnetic operators and nodal count distribution for graphs

被引:1
|
作者
Alon, Lior [1 ]
Goresky, Mark [2 ]
机构
[1] MIT, Dept Math, Simons Bldg Bldg 2,77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Inst Adv Study, Sch Math, 1 Einstein Dr, Princeton, NJ 08540 USA
关键词
Magnetic operators; spectral graph theory; nodal count; Morse theory; CONDUCTION ELECTRONS; MOTION;
D O I
10.4171/JST/468
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a discrete Schrodinger operator h on a finite connected graph G of n vertices, the nodal count 0(h, k) denotes the number of edges on which the k-th eigenvector changes sign. A signing h0 of h is any real symmetric matrix constructed by changing the sign of some off-diagonal entries of h, and its nodal count is defined according to the signing. The set of signings of h lie in a naturally defined torus Th of "magnetic perturbations" of h. G. Berkolaiko [Anal. PDE 6 (2013), 1213-1233] discovered that every signing h0 of h is a critical point of every eigenvalue Ak:Th R, with Morse index equal to the nodal surplus. We add further Morse theoretic information to this result. We show if h E Th is a critical point of Ak and the eigenvector vanishes at a single vertex v of degree d, then the critical point lies in a nondegenerate critical submanifold of dimension d + n - 4, closely related to the configuration space of a planar linkage. We compute its Morse index in terms of spectral data. The average nodal surplus distribution is the distribution of values of 0(h0, k) - (k - 1), averaged over all signings h0 of h. If all critical points correspond to simple eigenvalues with nowhere-vanishing eigenvectors, then the average nodal surplus distribution is binomial. In general, we conjecture that the nodal surplus distribution converges to a Gaussian in a CLT fashion as the first Betti number of G goes to infinity.
引用
收藏
页码:1225 / 1260
页数:36
相关论文
共 50 条
  • [1] Discrete Morse theory on graphs
    Ayala, R.
    Fernandez, L. M.
    Fernandez-Ternero, D.
    Vilches, J. A.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (18) : 3091 - 3100
  • [2] A Lower Bound for Nodal Count on Discrete and Metric Graphs
    Gregory Berkolaiko
    [J]. Communications in Mathematical Physics, 2008, 278 : 803 - 819
  • [3] A lower bound for nodal count on discrete and metric graphs
    Berkolaiko, Gregory
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 278 (03) : 803 - 819
  • [4] Discrete Morse Theory and the Homotopy Type of Clique Graphs
    Larrion, F.
    Pizana, M. A.
    Villarroel-Flores, R.
    [J]. ANNALS OF COMBINATORICS, 2013, 17 (04) : 743 - 754
  • [5] Discrete Morse Theory and the Homotopy Type of Clique Graphs
    F. Larrión
    M. A. Pizaña
    R. Villarroel-Flores
    [J]. Annals of Combinatorics, 2013, 17 : 743 - 754
  • [6] Universality of Nodal Count Distribution in Large Metric Graphs
    Alon, Lior
    Band, Ram
    Berkolaiko, Gregory
    [J]. EXPERIMENTAL MATHEMATICS, 2022,
  • [7] Discrete Morse theory for complexes of 2-connected graphs
    Shareshian, J
    [J]. TOPOLOGY, 2001, 40 (04) : 681 - 701
  • [8] Magnetic Schrodinger operators on periodic discrete graphs
    Korotyaev, Evgeny
    Saburova, Natalia
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (04) : 1625 - 1660
  • [9] Relations in doubly laced crystal graphs via discrete Morse theory
    Lynch, Molly
    [J]. JOURNAL OF COMBINATORICS, 2021, 12 (01) : 117 - 155
  • [10] Discrete Morse Theory
    Knudson, Kevin P.
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2020, 127 (08): : 763 - 768